These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 26173798)

  • 21. Aquatic macrophytes and trophic interactions: a scientometric analyses and research perspectives.
    Rocha CMC; Lima D; Cunha MCC; Almeida JS
    Braz J Biol; 2019; 79(4):617-624. PubMed ID: 30379201
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alternative attractors of shallow lakes.
    Scheffer M
    ScientificWorldJournal; 2001 Jul; 1():254-63. PubMed ID: 12806081
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stability of complex food webs: resilience, resistance and the average interaction strength.
    Vallina SM; Le Quéré C
    J Theor Biol; 2011 Mar; 272(1):160-73. PubMed ID: 21146542
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A cascade of evolutionary change alters consumer-resource dynamics and ecosystem function.
    Walsh MR; DeLong JP; Hanley TC; Post DM
    Proc Biol Sci; 2012 Aug; 279(1741):3184-92. PubMed ID: 22628469
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of microorganisms in a planktonic food web of a floodplain lake.
    Segovia BT; Pereira DG; Bini LM; de Meira BR; Nishida VS; Lansac-Tôha FA; Velho LF
    Microb Ecol; 2015 Feb; 69(2):225-33. PubMed ID: 25213653
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uncovering state-dependent relationships in shallow lakes using Bayesian latent variable regression.
    Vitense K; Hanson MA; Herwig BR; Zimmer KD; Fieberg J
    Ecol Appl; 2018 Mar; 28(2):309-322. PubMed ID: 29083517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dispersal-mediated trophic interactions can generate apparent patterns of dispersal limitation in aquatic metacommunities.
    Verreydt D; De Meester L; Decaestecker E; Villena MJ; Van Der Gucht K; Vannormelingen P; Vyverman W; Declerck SA
    Ecol Lett; 2012 Mar; 15(3):218-26. PubMed ID: 22221744
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimating In Situ Zooplankton Non-Predation Mortality in an Oligo-Mesotrophic Lake from Sediment Trap Data: Caveats and Reality Check.
    Dubovskaya OP; Tang KW; Gladyshev MI; Kirillin G; Buseva Z; Kasprzak P; Tolomeev AP; Grossart HP
    PLoS One; 2015; 10(7):e0131431. PubMed ID: 26146995
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicted rainfall changes disrupt trophic interactions in a tropical aquatic ecosystem.
    Pires AP; Marino NA; Srivastava DS; Farjalla VF
    Ecology; 2016 Oct; 97(10):2750-2759. PubMed ID: 27859129
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Habitat structure determines resource use by zooplankton in temperate lakes.
    Francis TB; Schindler DE; Holtgrieve GW; Larson ER; Scheuerell MD; Semmens BX; Ward EJ
    Ecol Lett; 2011 Apr; 14(4):364-72. PubMed ID: 21314881
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The long-term changes in food web structure and ecosystem functioning of a shallow lake: Implications for the lake management.
    Zhang X; Yi Y; Yang Z
    J Environ Manage; 2022 Jan; 301():113804. PubMed ID: 34626952
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neonicotinoids disrupt aquatic food webs and decrease fishery yields.
    Yamamuro M; Komuro T; Kamiya H; Kato T; Hasegawa H; Kameda Y
    Science; 2019 Nov; 366(6465):620-623. PubMed ID: 31672894
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Copepod hatching success in marine ecosystems with high diatom concentrations.
    Irigoien X; Harris RP; Verheye HM; Joly P; Runge J; Starr M; Pond D; Campbell R; Shreeve R; Ward P; Smith AN; Dam HG; Peterson W; Tirelli V; Koski M; Smith T; Harbour D; Davidson R
    Nature; 2002 Sep; 419(6905):387-9. PubMed ID: 12353032
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toward a trophic theory of species diversity.
    Terborgh JW
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):11415-22. PubMed ID: 26374788
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Broad shifts in the resource use of a commercially harvested fish following the invasion of dreissenid mussels.
    Fera SA; Rennie MD; Dunlop ES
    Ecology; 2017 Jun; 98(6):1681-1692. PubMed ID: 28369860
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in ecosystem resilience detected in automated measures of ecosystem metabolism during a whole-lake manipulation.
    Batt RD; Carpenter SR; Cole JJ; Pace ML; Johnson RA
    Proc Natl Acad Sci U S A; 2013 Oct; 110(43):17398-403. PubMed ID: 24101479
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Linking structure and function in food webs: maximization of different ecological functions generates distinct food web structures.
    Yen JD; Cabral RB; Cantor M; Hatton I; Kortsch S; Patrício J; Yamamichi M
    J Anim Ecol; 2016 Mar; 85(2):537-47. PubMed ID: 26749320
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Allochthonous subsidy of periodical cicadas affects the dynamics and stability of pond communities.
    Nowlin WH; González MJ; Vanni MJ; Stevens MH; Fields MW; Valente JJ
    Ecology; 2007 Sep; 88(9):2174-86. PubMed ID: 17918396
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Macrophyte refuges, prey behaviour and trophic interactions: consequences for lake water clarity.
    Genkai-Kato M
    Ecol Lett; 2007 Feb; 10(2):105-14. PubMed ID: 17257098
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trophic cascades in a formerly cod-dominated ecosystem.
    Frank KT; Petrie B; Choi JS; Leggett WC
    Science; 2005 Jun; 308(5728):1621-3. PubMed ID: 15947186
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.