BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 26174045)

  • 1. Cross-sectional structural variation relative to midshaft along hominine diaphyses. II. The hind limb.
    Mongle CS; Wallace IJ; Grine FE
    Am J Phys Anthropol; 2015 Nov; 158(3):398-407. PubMed ID: 26174045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-sectional structural variation relative to midshaft along hominine diaphyses. I. The forelimb.
    Mongle CS; Wallace IJ; Grine FE
    Am J Phys Anthropol; 2015 Nov; 158(3):386-97. PubMed ID: 26208106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of body proportions on femoral and tibial midshaft shape in hunter-gatherers.
    Shaw CN; Stock JT
    Am J Phys Anthropol; 2011 Jan; 144(1):22-9. PubMed ID: 20623683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Technical note: The effect of midshaft location on the error ranges of femoral and tibial cross-sectional parameters.
    Sládek V; Berner M; Galeta P; Friedl L; Kudrnová S
    Am J Phys Anthropol; 2010 Feb; 141(2):325-32. PubMed ID: 19919000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ontogenetic and morphological variation in primate long bones reflects signals of size and behavior.
    Nadell JA; Elton S; Kovarovic K
    Am J Phys Anthropol; 2021 Feb; 174(2):327-351. PubMed ID: 33368154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotypic plasticity and constraint along the upper and lower limb diaphyses of Homo sapiens.
    Nadell JA; Shaw CN
    Am J Phys Anthropol; 2016 Mar; 159(3):410-22. PubMed ID: 26536841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Middle Pleistocene human femoral diaphyses from Hualongdong, Anhui Province, China.
    Xing S; Wu XJ; Liu W; Pei SW; Cai YJ; Tong HW; Trinkaus E
    Am J Phys Anthropol; 2021 Feb; 174(2):285-298. PubMed ID: 32780474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long bone articular and diaphyseal structure in old world monkeys and apes. I: locomotor effects.
    Ruff CB
    Am J Phys Anthropol; 2002 Dec; 119(4):305-42. PubMed ID: 12448016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of relative body breadth on the diaphyseal morphology of the human lower limb.
    Davies TG; Stock JT
    Am J Hum Biol; 2014; 26(6):822-35. PubMed ID: 25163696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ape femoral-humeral rigidities and arboreal locomotion.
    Sarringhaus L; Lewton KL; Iqbal S; Carlson KJ
    Am J Biol Anthropol; 2022 Dec; 179(4):624-639. PubMed ID: 36790629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the form-function interface in African apes: Relationships between principal moments of area and positional behaviors in femoral and humeral diaphyses.
    Carlson KJ
    Am J Phys Anthropol; 2005 Jul; 127(3):312-34. PubMed ID: 15584067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of cortical bone geometry in the human femoral and tibial diaphysis.
    Gosman JH; Hubbell ZR; Shaw CN; Ryan TM
    Anat Rec (Hoboken); 2013 May; 296(5):774-87. PubMed ID: 23533061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Femoral neck and shaft structure in Homo naledi from the Dinaledi Chamber (Rising Star System, South Africa).
    Friedl L; Claxton AG; Walker CS; Churchill SE; Holliday TW; Hawks J; Berger LR; DeSilva JM; Marchi D
    J Hum Evol; 2019 Aug; 133():61-77. PubMed ID: 31358184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ontogenetic changes in limb bone structural proportions in mountain gorillas (Gorilla beringei beringei).
    Ruff CB; Burgess ML; Bromage TG; Mudakikwa A; McFarlin SC
    J Hum Evol; 2013 Dec; 65(6):693-703. PubMed ID: 24129040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diaphysator: An online application for the exhaustive cartography and user-friendly statistical analysis of long bone diaphyses.
    Santos F; Lacoste Jeanson A
    Am J Phys Anthropol; 2019 Jun; 169(2):377-384. PubMed ID: 30950516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long bone diaphyseal shape follows different ontogenetic trajectories in captive and wild gorillas.
    Canington SL; Sylvester AD; Burgess ML; Junno JA; Ruff CB
    Am J Phys Anthropol; 2018 Oct; 167(2):366-376. PubMed ID: 30159891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Periosteal versus true cross-sectional geometry: a comparison along humeral, femoral, and tibial diaphyses.
    Macintosh AA; Davies TG; Ryan TM; Shaw CN; Stock JT
    Am J Phys Anthropol; 2013 Mar; 150(3):442-52. PubMed ID: 23359138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating human long bone cross-sectional geometric properties: a comparison of noninvasive methods.
    O'Neill MC; Ruff CB
    J Hum Evol; 2004 Oct; 47(4):221-35. PubMed ID: 15454334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenetic and environmental effects on limb bone structure in gorillas.
    Ruff CB; Burgess ML; Junno JA; Mudakikwa A; Zollikofer CPE; Ponce de León MS; McFarlin SC
    Am J Phys Anthropol; 2018 Jun; 166(2):353-372. PubMed ID: 29430624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bilateral asymmetry in the limb bones of the chimpanzee (Pan troglodytes).
    Sarringhaus LA; Stock JT; Marchant LF; McGrew WC
    Am J Phys Anthropol; 2005 Dec; 128(4):840-5. PubMed ID: 16110479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.