BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 26174091)

  • 1. Temporal patterns of gene expression associated with tuberous root formation and development in sweetpotato (Ipomoea batatas).
    Wang Z; Fang B; Chen X; Liao M; Chen J; Zhang X; Huang L; Luo Z; Yao Z; Li Y
    BMC Plant Biol; 2015 Jul; 15():180. PubMed ID: 26174091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA-Seq and iTRAQ reveal multiple pathways involved in storage root formation and development in sweet potato (Ipomoea batatas L.).
    Dong T; Zhu M; Yu J; Han R; Tang C; Xu T; Liu J; Li Z
    BMC Plant Biol; 2019 Apr; 19(1):136. PubMed ID: 30971210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional profiling of sweetpotato (Ipomoea batatas) roots indicates down-regulation of lignin biosynthesis and up-regulation of starch biosynthesis at an early stage of storage root formation.
    Firon N; LaBonte D; Villordon A; Kfir Y; Solis J; Lapis E; Perlman TS; Doron-Faigenboim A; Hetzroni A; Althan L; Adani Nadir L
    BMC Genomics; 2013 Jul; 14():460. PubMed ID: 23834507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional genomics by integrated analysis of transcriptome of sweet potato (Ipomoea batatas (L.) Lam.) during root formation.
    Kim S; Nie H; Jun B; Kim J; Lee J; Kim S; Kim E; Kim S
    Genes Genomics; 2020 May; 42(5):581-596. PubMed ID: 32240514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of the root transcriptomes of cultivated sweetpotato (Ipomoea batatas [L.] Lam) and its wild ancestor (Ipomoea trifida [Kunth] G. Don).
    Ponniah SK; Thimmapuram J; Bhide K; Kalavacharla VK; Manoharan M
    BMC Plant Biol; 2017 Jan; 17(1):9. PubMed ID: 28086804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The wild sweetpotato (Ipomoea trifida) genome provides insights into storage root development.
    Li M; Yang S; Xu W; Pu Z; Feng J; Wang Z; Zhang C; Peng M; Du C; Lin F; Wei C; Qiao S; Zou H; Zhang L; Li Y; Yang H; Liao A; Song W; Zhang Z; Li J; Wang K; Zhang Y; Lin H; Zhang J; Tan W
    BMC Plant Biol; 2019 Apr; 19(1):119. PubMed ID: 30935381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo transcriptome sequencing and gene expression profiling of sweet potato leaves during low temperature stress and recovery.
    Ji CY; Bian X; Lee CJ; Kim HS; Kim SE; Park SC; Xie Y; Guo X; Kwak SS
    Gene; 2019 Jun; 700():23-30. PubMed ID: 30898711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide association study identified candidate genes controlling continuous storage root formation and bulking in hexaploid sweetpotato.
    Bararyenya A; Olukolu BA; Tukamuhabwa P; Grüneberg WJ; Ekaya W; Low J; Ochwo-Ssemakula M; Odong TL; Talwana H; Badji A; Kyalo M; Nasser Y; Gemenet D; Kitavi M; Mwanga ROM
    BMC Plant Biol; 2020 Jan; 20(1):3. PubMed ID: 31898489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptomic and targeted metabolomic analysis identifies genes and metabolites involved in anthocyanin accumulation in tuberous roots of sweetpotato (Ipomoea batatas L.).
    He L; Liu X; Liu S; Zhang J; Zhang Y; Sun Y; Tang R; Wang W; Cui H; Li R; Zhu H; Jia X
    Plant Physiol Biochem; 2020 Nov; 156():323-332. PubMed ID: 32998099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallel evolution of storage roots in morning glories (Convolvulaceae).
    Eserman LA; Jarret RL; Leebens-Mack JH
    BMC Plant Biol; 2018 May; 18(1):95. PubMed ID: 29843615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two sweetpotato ADP-glucose pyrophosphorylase isoforms are regulated antagonistically in response to sucrose content in storage roots.
    Kwak MS; Noh SA; Oh MJ; Huh GH; Kim KN; Lee SW; Shin JS; Bae JM
    Gene; 2006 Jan; 366(1):87-96. PubMed ID: 16338103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SRD1 is involved in the auxin-mediated initial thickening growth of storage root by enhancing proliferation of metaxylem and cambium cells in sweetpotato (Ipomoea batatas).
    Noh SA; Lee HS; Huh EJ; Huh GH; Paek KH; Shin JS; Bae JM
    J Exp Bot; 2010 Mar; 61(5):1337-49. PubMed ID: 20150515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome profiling of sweetpotato tuberous roots during low temperature storage.
    Ji CY; Chung WH; Kim HS; Jung WY; Kang L; Jeong JC; Kwak SS
    Plant Physiol Biochem; 2017 Mar; 112():97-108. PubMed ID: 28056396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncovering anthocyanin biosynthesis related microRNAs and their target genes by small RNA and degradome sequencing in tuberous roots of sweetpotato.
    He L; Tang R; Shi X; Wang W; Cao Q; Liu X; Wang T; Sun Y; Zhang H; Li R; Jia X
    BMC Plant Biol; 2019 Jun; 19(1):232. PubMed ID: 31159725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome Profiling of Beach Morning Glory (Ipomoea imperati) under Salinity and Its Comparative Analysis with Sweetpotato.
    Solis J; Baisakh N; Brandt SR; Villordon A; La Bonte D
    PLoS One; 2016; 11(2):e0147398. PubMed ID: 26848754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of class I knotted1-like homeobox genes in the storage roots of sweetpotato (Ipomoea batatas).
    Tanaka M; Kato N; Nakayama H; Nakatani M; Takahata Y
    J Plant Physiol; 2008 Nov; 165(16):1726-35. PubMed ID: 18242774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic analysis of tuberous root in two sweet potato varieties reveals the important genes and regulatory pathways in tuberous root development.
    Cai Z; Cai Z; Huang J; Wang A; Ntambiyukuri A; Chen B; Zheng G; Li H; Huang Y; Zhan J; Xiao D; He L
    BMC Genomics; 2022 Jun; 23(1):473. PubMed ID: 35761189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative transcriptome profiling of tuberous roots of two sweetpotato lines with contrasting low temperature tolerance during storage.
    Ji CY; Kim HS; Lee CJ; Kim SE; Lee HU; Nam SS; Li Q; Ma DF; Kwak SS
    Gene; 2020 Feb; 727():144244. PubMed ID: 31715303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of full-length enriched expressed sequence tags of dehydration-treated white fibrous roots of sweetpotato.
    Kim SH; Song WK; Kim YH; Kwon SY; Lee HS; Lee IC; Kwak SS
    BMB Rep; 2009 May; 42(5):271-6. PubMed ID: 19470240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IbMADS1 (Ipomoea batatas MADS-box 1 gene) is involved in tuberous root initiation in sweet potato (Ipomoea batatas).
    Ku AT; Huang YS; Wang YS; Ma D; Yeh KW
    Ann Bot; 2008 Jul; 102(1):57-67. PubMed ID: 18463111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.