BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 26174326)

  • 1. Vascular coupling in resting-state fMRI: evidence from multiple modalities.
    Zhu DC; Tarumi T; Khan MA; Zhang R
    J Cereb Blood Flow Metab; 2015 Dec; 35(12):1910-20. PubMed ID: 26174326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing the modulation of resting-state fMRI metrics by baseline physiology.
    Chu PPW; Golestani AM; Kwinta JB; Khatamian YB; Chen JJ
    Neuroimage; 2018 Jun; 173():72-87. PubMed ID: 29452265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting resting-state brain activity by spontaneous cerebral blood volume fluctuations using whole brain vascular space occupancy imaging.
    Miao X; Gu H; Yan L; Lu H; Wang DJ; Zhou XJ; Zhuo Y; Yang Y
    Neuroimage; 2014 Jan; 84():575-84. PubMed ID: 24055705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fractal analysis of spontaneous fluctuations of the BOLD signal in the human brain networks.
    Li YC; Huang YA
    J Magn Reson Imaging; 2014 May; 39(5):1118-25. PubMed ID: 24027126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BOLD fractional contribution to resting-state functional connectivity above 0.1 Hz.
    Chen JE; Glover GH
    Neuroimage; 2015 Feb; 107():207-218. PubMed ID: 25497686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic and static contributions of the cerebrovasculature to the resting-state BOLD signal.
    Tak S; Wang DJ; Polimeni JR; Yan L; Chen JJ
    Neuroimage; 2014 Jan; 84():672-80. PubMed ID: 24099842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional connectivity in BOLD and CBF data: similarity and reliability of resting brain networks.
    Jann K; Gee DG; Kilroy E; Schwab S; Smith RX; Cannon TD; Wang DJ
    Neuroimage; 2015 Feb; 106():111-22. PubMed ID: 25463468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The association between resting-state functional magnetic resonance imaging and aortic pulse-wave velocity in healthy adults.
    Hussein A; Matthews JL; Syme C; Macgowan C; MacIntosh BJ; Shirzadi Z; Pausova Z; Paus T; Chen JJ
    Hum Brain Mapp; 2020 Jun; 41(8):2121-2135. PubMed ID: 32034832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal.
    Wise RG; Ide K; Poulin MJ; Tracey I
    Neuroimage; 2004 Apr; 21(4):1652-64. PubMed ID: 15050588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting the fMRI Signal Fluctuation with Recurrent Neural Networks Trained on Vascular Network Dynamics.
    Sobczak F; He Y; Sejnowski TJ; Yu X
    Cereb Cortex; 2021 Jan; 31(2):826-844. PubMed ID: 32940658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Not-So-Global Blood Oxygen Level-Dependent Signal.
    Billings J; Keilholz S
    Brain Connect; 2018 Apr; 8(3):121-128. PubMed ID: 29430941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological origin of low-frequency drift in blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI).
    Yan L; Zhuo Y; Ye Y; Xie SX; An J; Aguirre GK; Wang J
    Magn Reson Med; 2009 Apr; 61(4):819-27. PubMed ID: 19189286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional differences in the coupling of cerebral blood flow and oxygen metabolism changes in response to activation: implications for BOLD-fMRI.
    Ances BM; Leontiev O; Perthen JE; Liang C; Lansing AE; Buxton RB
    Neuroimage; 2008 Feb; 39(4):1510-21. PubMed ID: 18164629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing specificity in functional magnetic resonance imaging by estimation of vessel size based on changes in blood oxygenation.
    Jochimsen TH; Möller HE
    Neuroimage; 2008 Mar; 40(1):228-36. PubMed ID: 18248738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliability comparison of spontaneous brain activities between BOLD and CBF contrasts in eyes-open and eyes-closed resting states.
    Zou Q; Miao X; Liu D; Wang DJ; Zhuo Y; Gao JH
    Neuroimage; 2015 Nov; 121():91-105. PubMed ID: 26226087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular effects of caffeine found in BOLD fMRI.
    Yang HS; Liang Z; Yao JF; Shen X; Frederick BD; Tong Y
    J Neurosci Res; 2019 Apr; 97(4):456-466. PubMed ID: 30488978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring vascular reactivity with resting-state blood oxygenation level-dependent (BOLD) signal fluctuations: A potential alternative to the breath-holding challenge?
    Jahanian H; Christen T; Moseley ME; Pajewski NM; Wright CB; Tamura MK; Zaharchuk G;
    J Cereb Blood Flow Metab; 2017 Jul; 37(7):2526-2538. PubMed ID: 27683452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reproducibility of BOLD, perfusion, and CMRO2 measurements with calibrated-BOLD fMRI.
    Leontiev O; Buxton RB
    Neuroimage; 2007 Mar; 35(1):175-84. PubMed ID: 17208013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vascular origins of low-frequency oscillations in the cerebrospinal fluid signal in resting-state fMRI: Interpretation using photoplethysmography.
    Attarpour A; Ward J; Chen JJ
    Hum Brain Mapp; 2021 Jun; 42(8):2606-2622. PubMed ID: 33638224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of different cerebrospinal fluid and white matter fMRI filtering strategies-Quantifying noise removal and neural signal preservation.
    Bartoň M; Mareček R; Krajčovičová L; Slavíček T; Kašpárek T; Zemánková P; Říha P; Mikl M
    Hum Brain Mapp; 2019 Mar; 40(4):1114-1138. PubMed ID: 30403309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.