These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 26174326)

  • 61. Synchronization of intrinsic 0.1-Hz blood-oxygen-level-dependent oscillations in amygdala and prefrontal cortex in subjects with increased state anxiety.
    Pfurtscheller G; Schwerdtfeger A; Seither-Preisler A; Brunner C; Aigner CS; Calisto J; Gens J; Andrade A
    Eur J Neurosci; 2018 Mar; 47(5):417-426. PubMed ID: 29368814
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effects of anesthesia on resting state BOLD signals in white matter of non-human primates.
    Wu TL; Wang F; Anderson AW; Chen LM; Ding Z; Gore JC
    Magn Reson Imaging; 2016 Nov; 34(9):1235-1241. PubMed ID: 27451405
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Enhanced phase regression with Savitzky-Golay filtering for high-resolution BOLD fMRI.
    Barry RL; Gore JC
    Hum Brain Mapp; 2014 Aug; 35(8):3832-40. PubMed ID: 24443117
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Disambiguating the role of blood flow and global signal with partial information decomposition.
    Colenbier N; Van de Steen F; Uddin LQ; Poldrack RA; Calhoun VD; Marinazzo D
    Neuroimage; 2020 Jun; 213():116699. PubMed ID: 32179104
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Differential coupling between subcortical calcium and BOLD signals during evoked and resting state through simultaneous calcium fiber photometry and fMRI.
    Tong C; Dai JK; Chen Y; Zhang K; Feng Y; Liang Z
    Neuroimage; 2019 Oct; 200():405-413. PubMed ID: 31280011
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The physiology of developmental changes in BOLD functional imaging signals.
    Harris JJ; Reynell C; Attwell D
    Dev Cogn Neurosci; 2011 Jul; 1(3):199-216. PubMed ID: 22436508
    [TBL] [Abstract][Full Text] [Related]  

  • 67. de Bruijn cycles for neural decoding.
    Aguirre GK; Mattar MG; Magis-Weinberg L
    Neuroimage; 2011 Jun; 56(3):1293-300. PubMed ID: 21315160
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A review of functional magnetic resonance imaging for Brainnetome.
    Song M; Jiang T
    Neurosci Bull; 2012 Aug; 28(4):389-98. PubMed ID: 22833037
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Power spectrum of resting-state blood-oxygen-level-dependent signal.
    Pang JC; Robinson PA
    Phys Rev E; 2019 Aug; 100(2-1):022418. PubMed ID: 31574765
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Fractal analysis of spontaneous fluctuations of the BOLD signal in rat brain.
    Herman P; Sanganahalli BG; Hyder F; Eke A
    Neuroimage; 2011 Oct; 58(4):1060-9. PubMed ID: 21777682
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Human non-REM sleep and the mean global BOLD signal.
    McAvoy MP; Tagliazucchi E; Laufs H; Raichle ME
    J Cereb Blood Flow Metab; 2019 Nov; 39(11):2210-2222. PubMed ID: 30073858
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Power spectra reveal distinct BOLD resting-state time courses in white matter.
    Li M; Gao Y; Ding Z; Gore JC
    Proc Natl Acad Sci U S A; 2021 Nov; 118(44):. PubMed ID: 34716261
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Direct, intraoperative observation of ~0.1 Hz hemodynamic oscillations in awake human cortex: implications for fMRI.
    Rayshubskiy A; Wojtasiewicz TJ; Mikell CB; Bouchard MB; Timerman D; Youngerman BE; McGovern RA; Otten ML; Canoll P; McKhann GM; Hillman EM
    Neuroimage; 2014 Feb; 87():323-31. PubMed ID: 24185013
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Altered task-induced cerebral blood flow and oxygen metabolism underlies motor impairment in multiple sclerosis.
    West KL; Sivakolundu DK; Zuppichini MD; Turner MP; Spence JS; Lu H; Okuda DT; Rypma B
    J Cereb Blood Flow Metab; 2021 Jan; 41(1):182-193. PubMed ID: 32126873
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Quantitatively Interpreting fMRI signal.
    Zhang N; Zhu XH; Liu Z; He B; Chen W
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4415-8. PubMed ID: 19163693
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The resting-state fMRI arterial signal predicts differential blood transit time through the brain.
    Tong Y; Yao JF; Chen JJ; Frederick BD
    J Cereb Blood Flow Metab; 2019 Jun; 39(6):1148-1160. PubMed ID: 29333912
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Coupling between cerebrovascular oscillations and CSF flow fluctuations during wakefulness: An fMRI study.
    Yang HS; Inglis B; Talavage TM; Nair VV; Yao JF; Fitzgerald B; Schwichtenberg AJ; Tong Y
    J Cereb Blood Flow Metab; 2022 Jun; 42(6):1091-1103. PubMed ID: 35037498
    [TBL] [Abstract][Full Text] [Related]  

  • 78. What can spontaneous fluctuations of the blood oxygenation-level-dependent signal tell us about psychiatric disorders?
    Fornito A; Bullmore ET
    Curr Opin Psychiatry; 2010 May; 23(3):239-49. PubMed ID: 20216219
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A vascular anatomical network model of the spatio-temporal response to brain activation.
    Boas DA; Jones SR; Devor A; Huppert TJ; Dale AM
    Neuroimage; 2008 Apr; 40(3):1116-29. PubMed ID: 18289880
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Measuring functional connectivity in stroke: Approaches and considerations.
    Siegel JS; Shulman GL; Corbetta M
    J Cereb Blood Flow Metab; 2017 Aug; 37(8):2665-2678. PubMed ID: 28541130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.