These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 26174326)

  • 81. Characterizing the Blood Oxygen Level-Dependent Fluctuations in Musculoskeletal Tumours Using Functional Magnetic Resonance Imaging.
    Duan LS; Wang MJ; Sun F; Zhao ZJ; Xing M; Zang YF; Louis S; Cui SJ; Cui JL; Zhang H
    Sci Rep; 2016 Nov; 6():36522. PubMed ID: 27845359
    [TBL] [Abstract][Full Text] [Related]  

  • 82. The nature of spatiotemporal changes in cerebral hemodynamics as manifested in functional magnetic resonance imaging.
    Mitra PP; Ogawa S; Hu X; Uğurbil K
    Magn Reson Med; 1997 Apr; 37(4):511-8. PubMed ID: 9094072
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Sympathetic activity contributes to the fMRI signal.
    Özbay PS; Chang C; Picchioni D; Mandelkow H; Chappel-Farley MG; van Gelderen P; de Zwart JA; Duyn J
    Commun Biol; 2019; 2():421. PubMed ID: 31754651
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Global fluctuations of cerebral blood flow indicate a global brain network independent of systemic factors.
    Zhao L; Alsop DC; Detre JA; Dai W
    J Cereb Blood Flow Metab; 2019 Feb; 39(2):302-312. PubMed ID: 28816098
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Rude mechanicals in brain haemodynamics: non-neural actors that influence blood flow.
    Das A; Murphy K; Drew PJ
    Philos Trans R Soc Lond B Biol Sci; 2021 Jan; 376(1815):20190635. PubMed ID: 33190603
    [TBL] [Abstract][Full Text] [Related]  

  • 86. The effects of Alzheimer's disease related striatal pathologic changes on the fractional amplitude of low-frequency fluctuations.
    Cakir Y
    Comput Methods Biomech Biomed Engin; 2020 Dec; 23(16):1347-1359. PubMed ID: 32749154
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Using carpet plots to analyze transit times of low frequency oscillations in resting state fMRI.
    Fitzgerald B; Yao JF; Talavage TM; Hocke LM; Frederick BD; Tong Y
    Sci Rep; 2021 Mar; 11(1):7011. PubMed ID: 33772060
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Spectral analysis of physiological brain pulsations affecting the BOLD signal.
    Raitamaa L; Huotari N; Korhonen V; Helakari H; Koivula A; Kananen J; Kiviniemi V
    Hum Brain Mapp; 2021 Sep; 42(13):4298-4313. PubMed ID: 34037278
    [TBL] [Abstract][Full Text] [Related]  

  • 89. The fMRI global signal and its association with the signal from cranial bone.
    Huber D; Rabl L; Orsini C; Labek K; Viviani R
    Neuroimage; 2024 Aug; 297():120754. PubMed ID: 39059682
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Origin of the Time Lag Phenomenon and the Global Signal in Resting-State fMRI.
    Amemiya S; Takao H; Abe O
    Front Neurosci; 2020; 14():596084. PubMed ID: 33250709
    [TBL] [Abstract][Full Text] [Related]  

  • 91. BOLD cardiorespiratory pulsatility in the brain: from noise to signal of interest.
    Delli Pizzi S; Gambi F; Di Pietro M; Caulo M; Sensi SL; Ferretti A
    Front Hum Neurosci; 2023; 17():1327276. PubMed ID: 38259340
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox.
    Ribeiro AS; Lacerda LM; Ferreira HA
    PeerJ; 2015; 3():e1078. PubMed ID: 26207191
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Effects of scanner acoustic noise on intrinsic brain activity during auditory stimulation.
    Yakunina N; Kang EK; Kim TS; Min JH; Kim SS; Nam EC
    Neuroradiology; 2015 Oct; 57(10):1063-73. PubMed ID: 26193957
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Cerebral functional connectivity periodically (de)synchronizes with anatomical constraints.
    Liégeois R; Ziegler E; Phillips C; Geurts P; Gómez F; Bahri MA; Yeo BT; Soddu A; Vanhaudenhuyse A; Laureys S; Sepulchre R
    Brain Struct Funct; 2016 Jul; 221(6):2985-97. PubMed ID: 26197763
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Machine learning algorithm accurately detects fMRI signature of vulnerability to major depression.
    Sato JR; Moll J; Green S; Deakin JF; Thomaz CE; Zahn R
    Psychiatry Res; 2015 Aug; 233(2):289-91. PubMed ID: 26187550
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Self-portraits of the brain: cognitive science, data visualization, and communicating brain structure and function.
    Goldstone RL; Pestilli F; Börner K
    Trends Cogn Sci; 2015 Aug; 19(8):462-74. PubMed ID: 26187032
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Best (but oft-forgotten) practices: the multiple problems of multiplicity-whether and how to correct for many statistical tests.
    Streiner DL
    Am J Clin Nutr; 2015 Oct; 102(4):721-8. PubMed ID: 26245806
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Individual differences in response of dorsomedial prefrontal cortex predict daily social behavior.
    Powers KE; Chavez RS; Heatherton TF
    Soc Cogn Affect Neurosci; 2016 Jan; 11(1):121-6. PubMed ID: 26206505
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Musical Preferences are Linked to Cognitive Styles.
    Greenberg DM; Baron-Cohen S; Stillwell DJ; Kosinski M; Rentfrow PJ
    PLoS One; 2015; 10(7):e0131151. PubMed ID: 26200656
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Randomization Does Not Help Much, Comparability Does.
    Saint-Mont U
    PLoS One; 2015; 10(7):e0132102. PubMed ID: 26193621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.