These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 26174612)

  • 1. Hybrid nanostructures for high-sensitivity luminescence nanothermometry in the second biological window.
    Cerón EN; Ortgies DH; Del Rosal B; Ren F; Benayas A; Vetrone F; Ma D; Sanz-Rodríguez F; Solé JG; Jaque D; Rodríguez EM
    Adv Mater; 2015 Aug; 27(32):4781-7. PubMed ID: 26174612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unveiling in Vivo Subcutaneous Thermal Dynamics by Infrared Luminescent Nanothermometers.
    Ximendes EC; Santos WQ; Rocha U; Kagola UK; Sanz-Rodríguez F; Fernández N; Gouveia-Neto Ada S; Bravo D; Domingo AM; del Rosal B; Brites CD; Carlos LD; Jaque D; Jacinto C
    Nano Lett; 2016 Mar; 16(3):1695-703. PubMed ID: 26845418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subtissue thermal sensing based on neodymium-doped LaF₃ nanoparticles.
    Rocha U; Jacinto da Silva C; Ferreira Silva W; Guedes I; Benayas A; Martínez Maestro L; Acosta Elias M; Bovero E; van Veggel FC; García Solé JA; Jaque D
    ACS Nano; 2013 Feb; 7(2):1188-99. PubMed ID: 23311347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boosting the sensitivity of Nd(3+)-based luminescent nanothermometers.
    Balabhadra S; Debasu ML; Brites CD; Nunes LA; Malta OL; Rocha J; Bettinelli M; Carlos LD
    Nanoscale; 2015 Nov; 7(41):17261-7. PubMed ID: 26426085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vivo Ischemia Detection by Luminescent Nanothermometers.
    Ximendes EC; Rocha U; Del Rosal B; Vaquero A; Sanz-Rodríguez F; Monge L; Ren F; Vetrone F; Ma D; García-Solé J; Jacinto C; Jaque D; Fernández N
    Adv Healthc Mater; 2017 Feb; 6(4):. PubMed ID: 28009096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the Size of Poly(lactic-co-glycolic Acid) (PLGA) Nanoparticles Fabricated by Nanoprecipitation.
    Huang W; Zhang C
    Biotechnol J; 2018 Jan; 13(1):. PubMed ID: 28941234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon Dot Nanothermometry: Intracellular Photoluminescence Lifetime Thermal Sensing.
    Kalytchuk S; Poláková K; Wang Y; Froning JP; Cepe K; Rogach AL; Zbořil R
    ACS Nano; 2017 Feb; 11(2):1432-1442. PubMed ID: 28125202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Luminescence nanothermometry.
    Jaque D; Vetrone F
    Nanoscale; 2012 Aug; 4(15):4301-26. PubMed ID: 22751683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly efficient ratiometric nanothermometers based on colloidal carbon quantum dots.
    Han Y; Liu Y; Zhao H; Vomiero A; Li R
    J Mater Chem B; 2021 May; 9(20):4111-4119. PubMed ID: 34037068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of PLGA nanoparticles.
    Astete CE; Sabliov CM
    J Biomater Sci Polym Ed; 2006; 17(3):247-89. PubMed ID: 16689015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Luminescent/magnetic PLGA-based hybrid nanocomposites: a smart nanocarrier system for targeted codelivery and dual-modality imaging in cancer theranostics.
    Shen X; Li T; Chen Z; Geng Y; Xie X; Li S; Yang H; Wu C; Liu Y
    Int J Nanomedicine; 2017; 12():4299-4322. PubMed ID: 28652734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ratiometric nanothermometer based on an emissive Ln3+-organic framework.
    Cadiau A; Brites CD; Costa PM; Ferreira RA; Rocha J; Carlos LD
    ACS Nano; 2013 Aug; 7(8):7213-8. PubMed ID: 23869817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ratiometric upconversion nanothermometry with dual emission at the same wavelength decoded via a time-resolved technique.
    Qiu X; Zhou Q; Zhu X; Wu Z; Feng W; Li F
    Nat Commun; 2020 Jan; 11(1):4. PubMed ID: 31911593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 808 nm-Light-Excited Near-Infrared Luminescent Lanthanide Metal-Organic Frameworks for Highly Sensitive Physiological Temperature Sensing.
    Zhao D; Han X; Wang S; Liu J; Lu Y; Li C
    Chemistry; 2020 Mar; 26(14):3145-3151. PubMed ID: 31886920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near infrared absorbing near infrared emitting highly-sensitive luminescent nanothermometer based on Nd(3+) to Yb(3+) energy transfer.
    Marciniak Ł; Bednarkiewicz A; Stefanski M; Tomala R; Hreniak D; Strek W
    Phys Chem Chem Phys; 2015 Oct; 17(37):24315-21. PubMed ID: 26327196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent nanothermometers for intracellular thermal sensing.
    Jaque D; Rosal BD; Rodríguez EM; Maestro LM; Haro-González P; Solé JG
    Nanomedicine (Lond); 2014 May; 9(7):1047-62. PubMed ID: 24978463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional microbubbles and nanobubbles for photoacoustic and ultrasound imaging.
    Kim C; Qin R; Xu JS; Wang LV; Xu R
    J Biomed Opt; 2010; 15(1):010510. PubMed ID: 20210423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent N-Doped Carbon Dots as in Vitro and in Vivo Nanothermometer.
    Yang Y; Kong W; Li H; Liu J; Yang M; Huang H; Liu Y; Wang Z; Wang Z; Sham TK; Zhong J; Wang C; Liu Z; Lee ST; Kang Z
    ACS Appl Mater Interfaces; 2015 Dec; 7(49):27324-30. PubMed ID: 26593857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-Dependent Luminescence of Nd
    Wetzl C; Renero-Lecuna C; Cardo L; Liz-Marzán LM; Prato M
    ACS Appl Mater Interfaces; 2024 Jul; 16(27):35484-35493. PubMed ID: 38934218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum dot nano thermometers reveal heterogeneous local thermogenesis in living cells.
    Yang JM; Yang H; Lin L
    ACS Nano; 2011 Jun; 5(6):5067-71. PubMed ID: 21574616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.