These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 26175284)

  • 41. Enhancement strategies for Cu(II), Cr(III) and Cr(VI) remediation by a variety of seaweed species.
    Murphy V; Hughes H; McLoughlin P
    J Hazard Mater; 2009 Jul; 166(1):318-26. PubMed ID: 19121898
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells.
    Wang G; Huang L; Zhang Y
    Biotechnol Lett; 2008 Nov; 30(11):1959-66. PubMed ID: 18612596
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mutual benefits of acetate and mixed tungsten and molybdenum for their efficient removal in 40 L microbial electrolysis cells.
    Huang L; Tian F; Pan Y; Shan L; Shi Y; Logan BE
    Water Res; 2019 Oct; 162():358-368. PubMed ID: 31295655
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The biocathode of microbial electrochemical systems and microbially-influenced corrosion.
    Kim BH; Lim SS; Daud WR; Gadd GM; Chang IS
    Bioresour Technol; 2015 Aug; 190():395-401. PubMed ID: 25976915
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Different methods used to form oxygen reducing biocathodes lead to different biomass quantities, bacterial communities, and electrochemical kinetics.
    Rimboud M; Barakat M; Bergel A; Erable B
    Bioelectrochemistry; 2017 Aug; 116():24-32. PubMed ID: 28364576
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrochemical and microbial community responses of electrochemically active biofilms to copper ions in bioelectrochemical systems.
    Zhang Y; Li G; Wen J; Xu Y; Sun J; Ning XA; Lu X; Wang Y; Yang Z; Yuan Y
    Chemosphere; 2018 Apr; 196():377-385. PubMed ID: 29316463
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Conductive microbial cellulose as a novel biocathode for Cr (VI) bioreduction.
    Loloei M; Rezaee A; Roohaghdam AS; Aliofkhazraei M
    Carbohydr Polym; 2017 Apr; 162():56-61. PubMed ID: 28224895
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microbial Cd(II) and Cr(VI) resistance mechanisms and application in bioremediation.
    Xia X; Wu S; Zhou Z; Wang G
    J Hazard Mater; 2021 Jan; 401():123685. PubMed ID: 33113721
    [TBL] [Abstract][Full Text] [Related]  

  • 49. New approach in modeling Cr(VI) sorption onto biomass from metal binary mixtures solutions.
    Liu C; Fiol N; Villaescusa I; Poch J
    Sci Total Environ; 2016 Jan; 541():101-108. PubMed ID: 26398455
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electro-migration of heavy metals in an aged electroplating contaminated soil affected by the coexisting hexavalent chromium.
    Zhang W; Zhuang L; Tong L; Lo IM; Qiu R
    Chemosphere; 2012 Feb; 86(8):809-16. PubMed ID: 22197017
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of Cd, Cr, Cu, Ni, and Pb in selected cosmetic products from Jordanian, Sudanese, and Syrian markets.
    Massadeh AM; El-Khateeb MY; Ibrahim SM
    Public Health; 2017 Aug; 149():130-137. PubMed ID: 28628796
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80.
    Pehlivan E; Altun T
    J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Isolation and characterization of hexavalent chromium-reducing rhizospheric bacteria from a wetland.
    Mauricio Gutiérrez A; Peña Cabriales JJ; Maldonado Vega M
    Int J Phytoremediation; 2010; 12(4):317-34. PubMed ID: 20734910
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Diversity and Distribution of Heavy Metal-Resistant Bacteria in Polluted Sediments of the Araça Bay, São Sebastião (SP), and the Relationship Between Heavy Metals and Organic Matter Concentrations.
    Zampieri Bdel B; Pinto AB; Schultz L; de Oliveira MA; de Oliveira AJ
    Microb Ecol; 2016 Oct; 72(3):582-94. PubMed ID: 27480227
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells.
    Huang L; Chai X; Chen G; Logan BE
    Environ Sci Technol; 2011 Jun; 45(11):5025-31. PubMed ID: 21528902
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Heavy metal removal from multicomponent system by the cyanobacterium Nostoc muscorum: kinetics and interaction study.
    Roy AS; Hazarika J; Manikandan NA; Pakshirajan K; Syiem MB
    Appl Biochem Biotechnol; 2015 Apr; 175(8):3863-74. PubMed ID: 25725800
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Copper (II) binding of NAD(P)H- flavin oxidoreductase (NfoR) enhances its Cr (VI)-reducing ability.
    Han H; Ling Z; Zhou T; Xu R; He Y; Liu P; Li X
    Sci Rep; 2017 Nov; 7(1):15481. PubMed ID: 29133854
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Isolation and characterization of chromium(VI)-reducing bacteria from tannery effluents and solid wastes.
    Kabir MM; Fakhruddin ANM; Chowdhury MAZ; Pramanik MK; Fardous Z
    World J Microbiol Biotechnol; 2018 Aug; 34(9):126. PubMed ID: 30083836
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hybrid inorganic/organic alumina adsorbents-functionalized-purpurogallin for removal and preconcentration of Cr(III), Fe(III), Cu(II), Cd(II) and Pb(II) from underground water.
    Mahmoud ME; Hafez OF; Osman MM; Yakout AA; Alrefaay A
    J Hazard Mater; 2010 Apr; 176(1-3):906-12. PubMed ID: 20031308
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microbial reduction of Cr(VI) in the presence of Ni, Cu and Zn by bacterial consortium enriched from an electroplating contaminated site.
    Gong WJ; Wang XR; Zhao HP
    Biodegradation; 2021 Dec; 32(6):711-722. PubMed ID: 34528116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.