These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 26175284)

  • 61. Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater.
    Zakaria ZA; Zakaria Z; Surif S; Ahmad WA
    J Hazard Mater; 2007 Jul; 146(1-2):30-8. PubMed ID: 17188812
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A survey of selected heavy metal concentrations in Wisconsin dairy feeds.
    Li Y; McCrory DF; Powell JM; Saam H; Jackson-Smith D
    J Dairy Sci; 2005 Aug; 88(8):2911-22. PubMed ID: 16027206
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Microbial community structure and function of nitrobenzene reduction biocathode in response to carbon source switchover.
    Liang B; Cheng H; Van Nostrand JD; Ma J; Yu H; Kong D; Liu W; Ren N; Wu L; Wang A; Lee DJ; Zhou J
    Water Res; 2014 May; 54():137-48. PubMed ID: 24565804
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Simultaneous removal of multiple heavy metals using single chamber microbial electrolysis cells with biocathode in the micro-aerobic environment.
    Shi X; Duan Z; Jing Wang ; Zhou W; Jiang M; Li T; Ma H; Zhu X
    Chemosphere; 2023 Mar; 318():137982. PubMed ID: 36716938
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Impact of the start-up process on the microbial communities in biocathodes for electrosynthesis.
    Mateos R; Sotres A; Alonso RM; Escapa A; Morán A
    Bioelectrochemistry; 2018 Jun; 121():27-37. PubMed ID: 29331726
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Trace heavy metal ions promoted extracellular electron transfer and power generation by Shewanella in microbial fuel cells.
    Xu YS; Zheng T; Yong XY; Zhai DD; Si RW; Li B; Yu YY; Yong YC
    Bioresour Technol; 2016 Jul; 211():542-7. PubMed ID: 27038263
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Separation of heavy metals from water solutions at the laboratory scale.
    Pott BM; Mattiasson B
    Biotechnol Lett; 2004 Mar; 26(5):451-6. PubMed ID: 15104146
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Investigation of the transport and fate of Pb, Cd, Cr(VI) and As(V) in soil zones derived from moderately contaminated farmland in Northeast, China.
    Zhao X; Dong D; Hua X; Dong S
    J Hazard Mater; 2009 Oct; 170(2-3):570-7. PubMed ID: 19500903
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Applicability of a submersible microbial fuel cell for Cr(VI) detection in water.
    Chung H; Ju WJ; Jho EH; Nam K
    Environ Monit Assess; 2016 Nov; 188(11):613. PubMed ID: 27730460
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effects of arsenic, cadmium, chromium, and lead on gene expression regulated by a battery of 13 different promoters in recombinant HepG2 cells.
    Tully DB; Collins BJ; Overstreet JD; Smith CS; Dinse GE; Mumtaz MM; Chapin RE
    Toxicol Appl Pharmacol; 2000 Oct; 168(2):79-90. PubMed ID: 11032763
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Reduction of hexavalent chromium by a novel Ochrobactrum sp. - microbial characteristics and reduction kinetics.
    Narayani M; Vidya Shetty K
    J Basic Microbiol; 2014 Apr; 54(4):296-305. PubMed ID: 23553414
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Enhanced performance of hexavalent chromium reducing cathodes in the presence of Shewanella oneidensis MR-1 and lactate.
    Xafenias N; Zhang Y; Banks CJ
    Environ Sci Technol; 2013 May; 47(9):4512-20. PubMed ID: 23517384
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect of sulfate reduction activity on biological treatment of hexavalent chromium [Cr(VI)] contaminated electroplating wastewater under sulfate-rich condition.
    Chang IS; Kim BH
    Chemosphere; 2007 Jun; 68(2):218-26. PubMed ID: 17337035
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Cadmium (II) removal mechanisms in microbial electrolysis cells.
    Colantonio N; Kim Y
    J Hazard Mater; 2016 Jul; 311():134-41. PubMed ID: 26970043
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling of copper reduction.
    Hunsom M; Pruksathorn K; Damronglerd S; Vergnes H; Duverneuil P
    Water Res; 2005 Feb; 39(4):610-6. PubMed ID: 15707634
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: impact on plant growth and uptake of nutritional elements.
    Gardea-Torresdey JL; Peralta-Videa JR; Montes M; de la Rosa G; Corral-Diaz B
    Bioresour Technol; 2004 May; 92(3):229-35. PubMed ID: 14766155
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Speciation of heavy metals in water and sediments of an urban lake system.
    Gupta B; Kumar R; Rani M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(10):1231-42. PubMed ID: 23647114
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Efficient removal of heavy metal ions with biopolymer template synthesized mesoporous titania beads of hundreds of micrometers size.
    Wu N; Wei H; Zhang L
    Environ Sci Technol; 2012 Jan; 46(1):419-25. PubMed ID: 22129207
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Correlation between circuital current, Cu(II) reduction and cellular electron transfer in EAB isolated from Cu(II)-reduced biocathodes of microbial fuel cells.
    Shen J; Huang L; Zhou P; Quan X; Puma GL
    Bioelectrochemistry; 2017 Apr; 114():1-7. PubMed ID: 27835761
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Excessive extracellular polymeric substances induced by organic shocks accelerate electron transfer of oxygen reducing biocathode.
    Liao C; Zhao Q; Wang S; Yan X; Li T; Zhou L; An J; Yan Y; Li N; Wang X
    Sci Total Environ; 2021 Jun; 774():145767. PubMed ID: 33610993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.