These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 2617542)

  • 1. Venom production in snake venom gland cells cultured in vitro.
    Sells PG; Hommel M; Theakston RD
    Toxicon; 1989; 27(11):1245-9. PubMed ID: 2617542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein synthesis and morphological changes in the secretory epithelium of the venom gland of Crotalus durissus terrificus at different times after manual extraction of venom.
    De Lucca FL; Haddad A; Kochva E; Rothschild AM; Valeri V
    Toxicon; 1974 Aug; 12(4):361-8. PubMed ID: 4439412
    [No Abstract]   [Full Text] [Related]  

  • 3. Snake venomics of Bitis gabonica gabonica. Protein family composition, subunit organization of venom toxins, and characterization of dimeric disintegrins bitisgabonin-1 and bitisgabonin-2.
    Calvete JJ; Marcinkiewicz C; Sanz L
    J Proteome Res; 2007 Jan; 6(1):326-36. PubMed ID: 17203976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term primary culture of secretory cells of Bothrops jararaca venom gland for venom production in vitro.
    Yamanouye N; Kerchove CM; Moura-da-Silva AM; Carneiro SM; Markus RP
    Nat Protoc; 2006; 1(6):2763-6. PubMed ID: 17406533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Venom production and secretion in reptiles.
    Mackessy SP
    J Exp Biol; 2022 Apr; 225(7):. PubMed ID: 35363854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the messenger RNA population coding for components of viperid snake venom.
    Vandenplas ML; Vandenplas S; Brebner K; Bester AJ; Boyd CD
    Toxicon; 1985; 23(2):289-305. PubMed ID: 4024139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of protein synthesis in the venom gland of viperid snakes.
    Oron U; Bdolah A
    J Cell Biol; 1973 Jan; 56(1):177-90. PubMed ID: 4345163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulation of some secretory enzymes in venom glands of Vipera palaestinae.
    Brown RS; Brown MB; Bdolah A; Kochva E
    Am J Physiol; 1975 Dec; 229(6):1675-9. PubMed ID: 174447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Venom production in long-term primary culture of secretory cells of the Bothrops jararaca venom gland.
    Carneiro SM; Zablith MB; Kerchove CM; Moura-da-Silva AM; Quissell DO; Markus RP; Yamanouye N
    Toxicon; 2006 Jan; 47(1):87-94. PubMed ID: 16310237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular transport of proteins in active and resting secretory cells of the venom gland of Vipera palaestinae.
    Oron U; Bdolah A
    J Cell Biol; 1978 Aug; 78(2):488-502. PubMed ID: 690176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An investigation of venom secretion by the venom gland cells of the carpet viper (Echis carinatus).
    Taylor D; Iddon D; Sells P; Semoff S; Theakston RD
    Toxicon; 1986; 24(7):651-9. PubMed ID: 3535168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The origin of snakes and evolution of the venom apparatus.
    Kochva E
    Toxicon; 1987; 25(1):65-106. PubMed ID: 3564066
    [No Abstract]   [Full Text] [Related]  

  • 13. Snake Venom Gland Organoids.
    Post Y; Puschhof J; Beumer J; Kerkkamp HM; de Bakker MAG; Slagboom J; de Barbanson B; Wevers NR; Spijkers XM; Olivier T; Kazandjian TD; Ainsworth S; Iglesias CL; van de Wetering WJ; Heinz MC; van Ineveld RL; van Kleef RGDM; Begthel H; Korving J; Bar-Ephraim YE; Getreuer W; Rios AC; Westerink RHS; Snippert HJG; van Oudenaarden A; Peters PJ; Vonk FJ; Kool J; Richardson MK; Casewell NR; Clevers H
    Cell; 2020 Jan; 180(2):233-247.e21. PubMed ID: 31978343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Derivation of snake venom gland organoids for in vitro venom production.
    Puschhof J; Post Y; Beumer J; Kerkkamp HM; Bittenbinder M; Vonk FJ; Casewell NR; Richardson MK; Clevers H
    Nat Protoc; 2021 Mar; 16(3):1494-1510. PubMed ID: 33504990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Snake venomics of Bitis species reveals large intragenus venom toxin composition variation: application to taxonomy of congeneric taxa.
    Calvete JJ; Escolano J; Sanz L
    J Proteome Res; 2007 Jul; 6(7):2732-45. PubMed ID: 17559253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of beta-adrenoceptors responsible for venom production in the venom gland of the snake Bothrops jararaca.
    Yamanouye N; Carneiro SM; Scrivano CN; Markus RP
    Life Sci; 2000 Jun; 67(3):217-26. PubMed ID: 10983865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel transcripts in the maxillary venom glands of advanced snakes.
    Fry BG; Scheib H; de L M Junqueira de Azevedo I; Silva DA; Casewell NR
    Toxicon; 2012 Jun; 59(7-8):696-708. PubMed ID: 22465490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA-seq and high-definition mass spectrometry reveal the complex and divergent venoms of two rear-fanged colubrid snakes.
    McGivern JJ; Wray KP; Margres MJ; Couch ME; Mackessy SP; Rokyta DR
    BMC Genomics; 2014 Dec; 15(1):1061. PubMed ID: 25476704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of ribonucleic acid in the venom gland of Crotalus durissus terrificus (Ophidia, Reptilia) after manual extraction of tne venom.
    de Lucca FL; Imaizumi MT
    Biochem J; 1972 Nov; 130(2):335-42. PubMed ID: 4664568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein Profile Analysis of Two Australian Snake Venoms by One- Dimensional Gel Electrophoresis and MS/MS Experiments.
    Georgieva D; Hildebrand D; Simas R; Coronado MA; Kwiatkowski M; Schlüter H; Arni R; Spencer P; Betzel C
    Curr Med Chem; 2017; 24(17):1892-1908. PubMed ID: 28571558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.