BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26175437)

  • 1. Subdiffraction resolution microscopy methods for analyzing centrosomes organization.
    Mennella V; Hanna R; Kim M
    Methods Cell Biol; 2015; 129():129-152. PubMed ID: 26175437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanometer-Scale Molecular Mapping by Super-resolution Fluorescence Microscopy.
    Mennella V; Liu Z
    Methods Mol Biol; 2022; 2440():305-326. PubMed ID: 35218547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in super-resolution fluorescence imaging and its applications in biology.
    Han R; Li Z; Fan Y; Jiang Y
    J Genet Genomics; 2013 Dec; 40(12):583-95. PubMed ID: 24377865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic optical reconstruction microscopy (STORM): a method for superresolution fluorescence imaging.
    Bates M; Jones SA; Zhuang X
    Cold Spring Harb Protoc; 2013 Jun; 2013(6):498-520. PubMed ID: 23734025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional structured illumination microscopy and its application to chromosome structure.
    Carlton PM
    Chromosome Res; 2008; 16(3):351-65. PubMed ID: 18461477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Practical limitations of superresolution imaging due to conventional sample preparation revealed by a direct comparison of CLSM, SIM and dSTORM.
    Bachmann M; Fiederling F; Bastmeyer M
    J Microsc; 2016 Jun; 262(3):306-15. PubMed ID: 26694787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging centrosomes in fly testes.
    Basiri ML; Blachon S; Chim YC; Avidor-Reiss T
    J Vis Exp; 2013 Sep; (79):e50938. PubMed ID: 24084634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and microtubule-nucleation activity of isolated Drosophila embryo centrosomes characterized by whole mount scanning and transmission electron microscopy.
    Lange BM; Kirfel G; Gestmann I; Herzog V; González C
    Histochem Cell Biol; 2005 Sep; 124(3-4):325-34. PubMed ID: 16091939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microinjection techniques for studying centrosome function in Drosophila melanogaster syncytial embryos.
    Conduit PT; Hayward D; Wakefield JG
    Methods Cell Biol; 2015; 129():229-249. PubMed ID: 26175442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization microscopy of DNA in situ using Vybrant(®) DyeCycle™ Violet fluorescent probe: A new approach to study nuclear nanostructure at single molecule resolution.
    Żurek-Biesiada D; Szczurek AT; Prakash K; Mohana GK; Lee HK; Roignant JY; Birk UJ; Dobrucki JW; Cremer C
    Exp Cell Res; 2016 May; 343(2):97-106. PubMed ID: 26341267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of human gamete centrosomes for assisted reproduction.
    Sathananthan AH; Ratnasooriya WD; de Silva PK; Menezes J
    Ital J Anat Embryol; 2001; 106(2 Suppl 2):61-73. PubMed ID: 11732597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Super-resolution microscopy for analyzing neuromuscular junctions and synapses.
    Badawi Y; Nishimune H
    Neurosci Lett; 2020 Jan; 715():134644. PubMed ID: 31765730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-lapse recording of centrosomes and other organelles in Drosophila neuroblasts.
    Pampalona J; Januschke J; Sampaio P; Gonzalez C
    Methods Cell Biol; 2015; 129():301-315. PubMed ID: 26175445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cold-treated centrosome: isolation of centrosomes from mitotic sea urchin eggs, production of an anticentrosomal antibody, and novel ultrastructural imaging.
    Thompson-Coffe C; Coffe G; Schatten H; Mazia D; Schatten G
    Cell Motil Cytoskeleton; 1996; 33(3):197-207. PubMed ID: 8674139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the localization of centrosomal proteins by PALM/STORM nanoscopy.
    Sillibourne JE; Specht CG; Izeddin I; Hurbain I; Tran P; Triller A; Darzacq X; Dahan M; Bornens M
    Cytoskeleton (Hoboken); 2011 Nov; 68(11):619-27. PubMed ID: 21976302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of nucleation-competent centrosomes from Dictyostelium discoideum.
    Gräf R; Euteneuer U; Ueda M; Schliwa M
    Eur J Cell Biol; 1998 Jul; 76(3):167-75. PubMed ID: 9716263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superresolution imaging with optical fluctuation using speckle patterns illumination.
    Kim M; Park C; Rodriguez C; Park Y; Cho YH
    Sci Rep; 2015 Nov; 5():16525. PubMed ID: 26572283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods.
    Tam J; Merino D
    J Neurochem; 2015 Nov; 135(4):643-58. PubMed ID: 26222552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy.
    Huang B; Wang W; Bates M; Zhuang X
    Science; 2008 Feb; 319(5864):810-3. PubMed ID: 18174397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of centrosome structure in fertilized and artificially activated sea urchin eggs using immunofluorescence microscopy and isolation of centrosomes followed by structural characterization with field emission scanning electron microscopy.
    Schatten H; Chakrabarti A
    Methods Mol Biol; 2004; 253():151-64. PubMed ID: 15037795
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.