BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

472 related articles for article (PubMed ID: 26175494)

  • 1. Reserve stem cells: Differentiated cells reprogram to fuel repair, metaplasia, and neoplasia in the adult gastrointestinal tract.
    Mills JC; Sansom OJ
    Sci Signal; 2015 Jul; 8(385):re8. PubMed ID: 26175494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regenerative proliferation of differentiated cells by mTORC1-dependent paligenosis.
    Willet SG; Lewis MA; Miao ZF; Liu D; Radyk MD; Cunningham RL; Burclaff J; Sibbel G; Lo HG; Blanc V; Davidson NO; Wang ZN; Mills JC
    EMBO J; 2018 Apr; 37(7):. PubMed ID: 29467218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reprogramming in vivo produces teratomas and iPS cells with totipotency features.
    Abad M; Mosteiro L; Pantoja C; Cañamero M; Rayon T; Ors I; Graña O; Megías D; Domínguez O; Martínez D; Manzanares M; Ortega S; Serrano M
    Nature; 2013 Oct; 502(7471):340-5. PubMed ID: 24025773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasticity of differentiated cells in wound repair and tumorigenesis, part I: stomach and pancreas.
    Burclaff J; Mills JC
    Dis Model Mech; 2018 Jul; 11(7):. PubMed ID: 30037967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of Mouse and Human Organoid-Forming Intestinal Progenitor Cells by Direct Lineage Reprogramming.
    Miura S; Suzuki A
    Cell Stem Cell; 2017 Oct; 21(4):456-471.e5. PubMed ID: 28943029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The gastrointestinal tract stem cell niche.
    Yen TH; Wright NA
    Stem Cell Rev; 2006; 2(3):203-12. PubMed ID: 17625256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitors of tyrosine phosphatases and apoptosis reprogram lineage-marked differentiated muscle to myogenic progenitor cells.
    Paliwal P; Conboy IM
    Chem Biol; 2011 Sep; 18(9):1153-66. PubMed ID: 21944754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacological mimicking of caloric restriction elicits epigenetic reprogramming of differentiated cells to stem-like self-renewal states.
    Oliveras-Ferraros C; Vazquez-Martin A; Menendez JA
    Rejuvenation Res; 2010 Oct; 13(5):519-26. PubMed ID: 21047255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal reprogramming of differentiated cells underlies regeneration and neoplasia in the intestinal epithelium.
    Higa T; Okita Y; Matsumoto A; Nakayama S; Oka T; Sugahara O; Koga D; Takeishi S; Nakatsumi H; Hosen N; Robine S; Taketo MM; Sato T; Nakayama KI
    Nat Commun; 2022 Mar; 13(1):1500. PubMed ID: 35314700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasticity of differentiated cells in wound repair and tumorigenesis, part II: skin and intestine.
    Burclaff J; Mills JC
    Dis Model Mech; 2018 Aug; 11(9):. PubMed ID: 30171151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pancreatic cell fate specification: insights into developmental mechanisms and their application for lineage reprogramming.
    Isaacson A; Spagnoli FM
    Curr Opin Genet Dev; 2021 Oct; 70():32-39. PubMed ID: 34062490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gastrointestinal stem cells in health and disease: from flies to humans.
    Li H; Jasper H
    Dis Model Mech; 2016 May; 9(5):487-99. PubMed ID: 27112333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cellular origins of cancer with particular reference to the gastrointestinal tract.
    Alison MR
    Int J Exp Pathol; 2020 Oct; 101(5):132-151. PubMed ID: 32794627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lineage potential, plasticity and environmental reprogramming of epithelial stem/progenitor cells.
    Amici AW; Onikoyi FO; Bonfanti P
    Biochem Soc Trans; 2014 Jun; 42(3):637-44. PubMed ID: 24849231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sphere-induced reprogramming of RPE cells into dual-potential RPE stem-like cells.
    Chen F; Liu X; Chen Y; Liu JY; Lu H; Wang W; Lu X; Dean KC; Gao L; Kaplan HJ; Dean DC; Peng X; Liu Y
    EBioMedicine; 2020 Feb; 52():102618. PubMed ID: 31982829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracing the origin of adult intestinal stem cells.
    Guiu J; Hannezo E; Yui S; Demharter S; Ulyanchenko S; Maimets M; Jørgensen A; Perlman S; Lundvall L; Mamsen LS; Larsen A; Olesen RH; Andersen CY; Thuesen LL; Hare KJ; Pers TH; Khodosevich K; Simons BD; Jensen KB
    Nature; 2019 Jun; 570(7759):107-111. PubMed ID: 31092921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The regenerative nidi of the locust midgut as a model to study epithelial cell differentiation from stem cells.
    Illa-Bochaca I; Montuenga LM
    J Exp Biol; 2006 Jun; 209(Pt 11):2215-23. PubMed ID: 16709922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deciphering the roadmap of in vivo reprogramming toward pluripotency.
    Chondronasiou D; Martínez de Villarreal J; Melendez E; Lynch CJ; Pozo ND; Kovatcheva M; Aguilera M; Prats N; Real FX; Serrano M
    Stem Cell Reports; 2022 Nov; 17(11):2501-2517. PubMed ID: 36270281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct cardiac reprogramming: progress and challenges in basic biology and clinical applications.
    Sadahiro T; Yamanaka S; Ieda M
    Circ Res; 2015 Apr; 116(8):1378-91. PubMed ID: 25858064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence that stem cells reside in the adult Drosophila midgut epithelium.
    Micchelli CA; Perrimon N
    Nature; 2006 Jan; 439(7075):475-9. PubMed ID: 16340959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.