These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 26175626)

  • 1. WIPPER: an accurate and efficient field phenotyping platform for large-scale applications.
    Utsushi H; Abe A; Tamiru M; Ogasawara Y; Obara T; Sato E; Ochiai Y; Terauchi R; Takagi H
    Breed Sci; 2015 Jun; 65(3):285-9. PubMed ID: 26175626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.
    Guo Q; Wu F; Pang S; Zhao X; Chen L; Liu J; Xue B; Xu G; Li L; Jing H; Chu C
    Sci China Life Sci; 2018 Mar; 61(3):328-339. PubMed ID: 28616808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field.
    Shakoor N; Lee S; Mockler TC
    Curr Opin Plant Biol; 2017 Aug; 38():184-192. PubMed ID: 28738313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PhenoApp: A mobile tool for plant phenotyping to record field and greenhouse observations.
    Röckel F; Schreiber T; Schüler D; Braun U; Krukenberg I; Schwander F; Peil A; Brandt C; Willner E; Gransow D; Scholz U; Kecke S; Maul E; Lange M; Töpfer R
    F1000Res; 2022; 11():12. PubMed ID: 36636476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies.
    Yang W; Duan L; Chen G; Xiong L; Liu Q
    Curr Opin Plant Biol; 2013 May; 16(2):180-7. PubMed ID: 23578473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field high-throughput phenotyping: the new crop breeding frontier.
    Araus JL; Cairns JE
    Trends Plant Sci; 2014 Jan; 19(1):52-61. PubMed ID: 24139902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-throughput phenotyping procedure for evaluation of antixenosis against common cutworm at early seedling stage in soybean.
    Xing G; Liu K; Gai J
    Plant Methods; 2017; 13():66. PubMed ID: 28794796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid online plant leaf area change detection with high-throughput plant image data.
    Zhan Y; Zhang R; Zhou Y; Stoerger V; Hiller J; Awada T; Ge Y
    J Appl Stat; 2023; 50(14):2984-2998. PubMed ID: 37808616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal Leaf Positions for SPAD Meter Measurement in Rice.
    Yuan Z; Cao Q; Zhang K; Ata-Ul-Karim ST; Tian Y; Zhu Y; Cao W; Liu X
    Front Plant Sci; 2016; 7():719. PubMed ID: 27303416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of quantitative trait loci affecting chlorophyll content of rice leaves in a double haploid population and two backcross populations.
    Jiang G; Zeng J; He Y
    Gene; 2014 Feb; 536(2):287-95. PubMed ID: 24361205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Image-based dynamic quantification and high-accuracy 3D evaluation of canopy structure of plant populations.
    Hui F; Zhu J; Hu P; Meng L; Zhu B; Guo Y; Li B; Ma Y
    Ann Bot; 2018 Apr; 121(5):1079-1088. PubMed ID: 29509841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Review of High-Throughput Field Phenotyping Systems: Focusing on Ground Robots.
    Xu R; Li C
    Plant Phenomics; 2022; 2022():9760269. PubMed ID: 36059604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GridScore: a tool for accurate, cross-platform phenotypic data collection and visualization.
    Raubach S; Schreiber M; Shaw PD
    BMC Bioinformatics; 2022 Jun; 23(1):214. PubMed ID: 35668357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LiDARPheno - A Low-Cost LiDAR-Based 3D Scanning System for Leaf Morphological Trait Extraction.
    Panjvani K; Dinh AV; Wahid KA
    Front Plant Sci; 2019; 10():147. PubMed ID: 30815008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The field phenotyping platform's next darling: Dicotyledons.
    Li X; Xu X; Chen M; Xu M; Wang W; Liu C; Yu L; Liu W; Yang W
    Front Plant Sci; 2022; 13():935748. PubMed ID: 36092402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Methods of high-throughput plant phenotyping for large-scale breeding and genetic experiments].
    Afonnikov DA; Genaev MA; Doroshkov AV; Komyshev EG; Pshenichnikova TA
    Genetika; 2016 Jul; 52(7):788-803. PubMed ID: 29368867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap.
    Großkinsky DK; Svensgaard J; Christensen S; Roitsch T
    J Exp Bot; 2015 Sep; 66(18):5429-40. PubMed ID: 26163702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rice breeding in the post-genomics era: from concept to practice.
    Li ZK; Zhang F
    Curr Opin Plant Biol; 2013 May; 16(2):261-9. PubMed ID: 23571011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Management of nitrogen through the use of leaf color chart (LCC) and soil plant analysis development (SPAD) or chlorophyll meter in rice under irrigated ecosystem.
    Maiti D; Das DK; Karak T; Banerjee M
    ScientificWorldJournal; 2004 Sep; 4():838-46. PubMed ID: 15452649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.