These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 26175627)
1. Formation of todorokite from "c-disordered" H(+)-birnessites: the roles of average manganese oxidation state and interlayer cations. Zhao H; Liang X; Yin H; Liu F; Tan W; Qiu G; Feng X Geochem Trans; 2015; 16():8. PubMed ID: 26175627 [TBL] [Abstract][Full Text] [Related]
2. Effects of Co(II) ion exchange, Ni(II)- and V(V)-doping on the transformation behaviors of Cr(III) on hexagonal turbostratic birnessite-water interfaces. Yin H; Sun J; Yan X; Yang X; Feng X; Tan W; Qiu G; Zhang J; Ginder-Vogel M; Liu F Environ Pollut; 2020 Jan; 256():113462. PubMed ID: 31706772 [TBL] [Abstract][Full Text] [Related]
3. [Effects of Mn(III) on oxidation of Cr(III) with birnessites]. Tan JF; Qiu GH; Liu F; Tan WF; Feng XH Huan Jing Ke Xue; 2009 Sep; 30(9):2779-85. PubMed ID: 19927840 [TBL] [Abstract][Full Text] [Related]
4. Photochemical Formation and Transformation of Birnessite: Effects of Cations on Micromorphology and Crystal Structure. Zhang T; Liu L; Tan W; Suib SL; Qiu G; Liu F Environ Sci Technol; 2018 Jun; 52(12):6864-6871. PubMed ID: 29792324 [TBL] [Abstract][Full Text] [Related]
5. Coordination geometry of Zn Yin H; Wang X; Qin Z; Ginder-Vogel M; Zhang S; Jiang S; Liu F; Li S; Zhang J; Wang Y J Environ Sci (China); 2018 Mar; 65():282-292. PubMed ID: 29548399 [TBL] [Abstract][Full Text] [Related]
6. Studies on the formation of todorokite-type manganese oxide with different crystalline birnessites by Mg2+-templating reaction. Liu ZH; Kang L; Ooi K; Makita Y; Feng Q J Colloid Interface Sci; 2005 May; 285(1):239-46. PubMed ID: 15797419 [TBL] [Abstract][Full Text] [Related]
7. [Characterization of Pb2+ adsorption on the surface of birnessite treatment with Na4P2O7 at different pH and the study on the distribution of Mn(III) in the birnessite]. Zhao W; Yin H; Liu F; Feng XH; Tan WF Huan Jing Ke Xue; 2011 Aug; 32(8):2477-84. PubMed ID: 22619981 [TBL] [Abstract][Full Text] [Related]
9. Co2+-exchange mechanism of birnessite and its application for the removal of Pb2+ and As(III). Yin H; Liu F; Feng X; Liu M; Tan W; Qiu G J Hazard Mater; 2011 Nov; 196():318-26. PubMed ID: 21963172 [TBL] [Abstract][Full Text] [Related]
10. [Adsorption of heavy metals on the surface of birnessite relationship with its Mn average oxidation state and adsorption sites]. Wang Y; Tan WF; Feng XH; Qiu GH; Liu F Huan Jing Ke Xue; 2011 Oct; 32(10):3128-36. PubMed ID: 22279934 [TBL] [Abstract][Full Text] [Related]
11. A fast sol-gel synthesis leading to highly crystalline birnessites under non-hydrothermal conditions. Ziller S; von Bülow JF; Dahl S; Lindén M Dalton Trans; 2017 Apr; 46(14):4582-4588. PubMed ID: 28317967 [TBL] [Abstract][Full Text] [Related]
12. [Relation between average oxidation state of Mn of birnessite and the amount of Pb2+ adsorbed]. Zhao W; Cui HJ; Feng XH; Tan WF; Liu F Huan Jing Ke Xue; 2009 Feb; 30(2):535-42. PubMed ID: 19402512 [TBL] [Abstract][Full Text] [Related]
13. Solid-state transformation of nanocrystalline phyllomanganate into tectomanganate: influence of initial layer and interlayer structure. Grangeon S; Lanson B; Lanson M Acta Crystallogr B Struct Sci Cryst Eng Mater; 2014 Oct; 70(Pt 5):828-38. PubMed ID: 25274516 [TBL] [Abstract][Full Text] [Related]
14. The pH-sensitive transformation of birnessite and its effect on the fate of norfloxacin. Wang Q; Han Z; Liu H; Chen T; Zou X; Chu Z; Hu J; Sun F; Wang H Chemosphere; 2023 Nov; 341():139932. PubMed ID: 37619744 [TBL] [Abstract][Full Text] [Related]
15. Antimony oxidation and sorption behavior on birnessites with different properties (δ-MnO Sun Q; Cui PX; Liu C; Peng SM; Alves ME; Zhou DM; Shi ZQ; Wang YJ Environ Pollut; 2019 Mar; 246():990-998. PubMed ID: 31159148 [TBL] [Abstract][Full Text] [Related]
16. The dehydration mechanism of Na and K birnessites: a comprehensive multitechnique study. André E; Cornu D; Pérez Ramírez L; Durand P; Gallet JJ; Bournel F; Rochet F; Ruby C; Carteret C; Coustel R Dalton Trans; 2024 Jun; 53(23):9952-9963. PubMed ID: 38809151 [TBL] [Abstract][Full Text] [Related]
17. Fourier-transform infrared spectroscopy (FTIR) analysis of triclinic and hexagonal birnessites. Ling FT; Post JE; Heaney PJ; Kubicki JD; Santelli CM Spectrochim Acta A Mol Biomol Spectrosc; 2017 May; 178():32-46. PubMed ID: 28161657 [TBL] [Abstract][Full Text] [Related]
18. Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals. Feng XH; Zhai LM; Tan WF; Liu F; He JZ Environ Pollut; 2007 May; 147(2):366-73. PubMed ID: 16996175 [TBL] [Abstract][Full Text] [Related]
19. A review on the transformation of birnessite in the environment: Implication for the stabilization of heavy metals. Shi M; Li Q; Wang Q; Yan X; Li B; Feng L; Wu C; Qiu R; Zhang H; Yang Z; Yang W; Liao Q; Chai L J Environ Sci (China); 2024 May; 139():496-515. PubMed ID: 38105072 [TBL] [Abstract][Full Text] [Related]
20. Redox Reactions between Mn(II) and Hexagonal Birnessite Change Its Layer Symmetry. Zhao H; Zhu M; Li W; Elzinga EJ; Villalobos M; Liu F; Zhang J; Feng X; Sparks DL Environ Sci Technol; 2016 Feb; 50(4):1750-8. PubMed ID: 26745815 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]