These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 26175666)
1. Single pairing spike-timing dependent plasticity in BiFeO3 memristors with a time window of 25 ms to 125 μs. Du N; Kiani M; Mayr CG; You T; Bürger D; Skorupa I; Schmidt OG; Schmidt H Front Neurosci; 2015; 9():227. PubMed ID: 26175666 [TBL] [Abstract][Full Text] [Related]
2. Synaptic Plasticity in Memristive Artificial Synapses and Their Robustness Against Noisy Inputs. Du N; Zhao X; Chen Z; Choubey B; Di Ventra M; Skorupa I; Bürger D; Schmidt H Front Neurosci; 2021; 15():660894. PubMed ID: 34335153 [TBL] [Abstract][Full Text] [Related]
3. Bipolar Analog Memristors as Artificial Synapses for Neuromorphic Computing. Wang R; Shi T; Zhang X; Wang W; Wei J; Lu J; Zhao X; Wu Z; Cao R; Long S; Liu Q; Liu M Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30373122 [TBL] [Abstract][Full Text] [Related]
4. Pulse Shape and Timing Dependence on the Spike-Timing Dependent Plasticity Response of Ion-Conducting Memristors as Synapses. Campbell KA; Drake KT; Barney Smith EH Front Bioeng Biotechnol; 2016; 4():97. PubMed ID: 28083531 [TBL] [Abstract][Full Text] [Related]
5. Analog Memristive Synapse in Spiking Networks Implementing Unsupervised Learning. Covi E; Brivio S; Serb A; Prodromakis T; Fanciulli M; Spiga S Front Neurosci; 2016; 10():482. PubMed ID: 27826226 [TBL] [Abstract][Full Text] [Related]
6. On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex. Zamarreño-Ramos C; Camuñas-Mesa LA; Pérez-Carrasco JA; Masquelier T; Serrano-Gotarredona T; Linares-Barranco B Front Neurosci; 2011; 5():26. PubMed ID: 21442012 [TBL] [Abstract][Full Text] [Related]
7. A 2-transistor/1-resistor artificial synapse capable of communication and stochastic learning in neuromorphic systems. Wang Z; Ambrogio S; Balatti S; Ielmini D Front Neurosci; 2014; 8():438. PubMed ID: 25642161 [TBL] [Abstract][Full Text] [Related]
8. Vertical MoS Xu R; Jang H; Lee MH; Amanov D; Cho Y; Kim H; Park S; Shin HJ; Ham D Nano Lett; 2019 Apr; 19(4):2411-2417. PubMed ID: 30896171 [TBL] [Abstract][Full Text] [Related]
9. Self-Adaptive Spike-Time-Dependent Plasticity of Metal-Oxide Memristors. Prezioso M; Merrikh Bayat F; Hoskins B; Likharev K; Strukov D Sci Rep; 2016 Feb; 6():21331. PubMed ID: 26893175 [TBL] [Abstract][Full Text] [Related]
10. STDP and STDP variations with memristors for spiking neuromorphic learning systems. Serrano-Gotarredona T; Masquelier T; Prodromakis T; Indiveri G; Linares-Barranco B Front Neurosci; 2013; 7():2. PubMed ID: 23423540 [TBL] [Abstract][Full Text] [Related]
11. Implementation of a spike-based perceptron learning rule using TiO2-x memristors. Mostafa H; Khiat A; Serb A; Mayr CG; Indiveri G; Prodromakis T Front Neurosci; 2015; 9():357. PubMed ID: 26483629 [TBL] [Abstract][Full Text] [Related]
12. A compound memristive synapse model for statistical learning through STDP in spiking neural networks. Bill J; Legenstein R Front Neurosci; 2014; 8():412. PubMed ID: 25565943 [TBL] [Abstract][Full Text] [Related]
13. An Adaptive STDP Learning Rule for Neuromorphic Systems. Gautam A; Kohno T Front Neurosci; 2021; 15():741116. PubMed ID: 34630026 [TBL] [Abstract][Full Text] [Related]
14. Spike-shape dependence of the spike-timing dependent synaptic plasticity in ferroelectric-tunnel-junction synapses. Stoliar P; Yamada H; Toyosaki Y; Sawa A Sci Rep; 2019 Nov; 9(1):17740. PubMed ID: 31780729 [TBL] [Abstract][Full Text] [Related]
15. Ultrafast and Low-Power 2D Bi Dong Z; Hua Q; Xi J; Shi Y; Huang T; Dai X; Niu J; Wang B; Wang ZL; Hu W Nano Lett; 2023 May; 23(9):3842-3850. PubMed ID: 37093653 [TBL] [Abstract][Full Text] [Related]
16. A TSTDP memristive synapse based on a comprehensive mathematical model of memory-TFT threshold voltage shift. Karimi G; Rastegar S J Theor Biol; 2022 Jul; 544():111119. PubMed ID: 35381226 [TBL] [Abstract][Full Text] [Related]
17. Synaptic Plasticity and Metaplasticity of Biological Synapse Realized in a KNbO Lee TH; Hwang HG; Woo JU; Kim DH; Kim TW; Nahm S ACS Appl Mater Interfaces; 2018 Aug; 10(30):25673-25682. PubMed ID: 29985576 [TBL] [Abstract][Full Text] [Related]
18. Memristive Hebbian plasticity model: device requirements for the emulation of Hebbian plasticity based on memristive devices. Ziegler M; Riggert C; Hansen M; Bartsch T; Kohlstedt H IEEE Trans Biomed Circuits Syst; 2015 Apr; 9(2):197-206. PubMed ID: 25879966 [TBL] [Abstract][Full Text] [Related]
19. Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device. Seo K; Kim I; Jung S; Jo M; Park S; Park J; Shin J; Biju KP; Kong J; Lee K; Lee B; Hwang H Nanotechnology; 2011 Jun; 22(25):254023. PubMed ID: 21572200 [TBL] [Abstract][Full Text] [Related]
20. Bipolar Resistive Switching in TiO Jena AK; Sahu MC; Mohanan KU; Mallik SK; Sahoo S; Pradhan GK; Sahoo S ACS Appl Mater Interfaces; 2023 Jan; 15(2):3574-3585. PubMed ID: 36595219 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]