BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 26175999)

  • 1. Formation and Stabilization of Raphasatin and Sulforaphene from Radish Roots by Endogenous Enzymolysis.
    Kim JW; Kim MB; Lim SB
    Prev Nutr Food Sci; 2015 Jun; 20(2):119-25. PubMed ID: 26175999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanism of deterioration of the glucosinolate-myrosynase system in radish roots during cold storage after harvest.
    Lee JG; Lim S; Kim J; Lee EJ
    Food Chem; 2017 Oct; 233():60-68. PubMed ID: 28530612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raphasatin is a more potent inducer of the detoxification enzymes than its degradation products.
    Scholl C; Eshelman BD; Barnes DM; Hanlon PR
    J Food Sci; 2011 Apr; 76(3):C504-11. PubMed ID: 21535821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism of sulforaphene degradation to different water contents.
    Tian G; Li Y; Cheng L; Yuan Q; Tang P; Kuang P; Hu J
    Food Chem; 2016 Mar; 194():1022-7. PubMed ID: 26471648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of Sulforaphene from Radish Seed Extracts with Recombinant Food-Grade
    Wang L; Jiang H; Liang X; Zhou W; Qiu Y; Xue C; Sun J; Mao X
    J Agric Food Chem; 2021 May; 69(18):5363-5371. PubMed ID: 33929187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical Characterization of a Novel Myrosinase Rmyr from
    Wang L; Jiang H; Qiu Y; Dong Y; Hamouda HI; Balah MA; Mao X
    J Agric Food Chem; 2022 Feb; 70(7):2303-2311. PubMed ID: 35112855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Instability and Structural Change of 4-Methylsulfinyl-3-butenyl Isothiocyanate in the Hydrolytic Process.
    Song D; Liang H; Kuang P; Tang P; Hu G; Yuan Q
    J Agric Food Chem; 2013 May; 61(21):5097-102. PubMed ID: 23688308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of high pressure pretreatment on myrosinase-glucosinolate system, physicochemical and bacterial properties during fermentation of brine-pickled radishes.
    Wu SM; Wu CP; Lin YH; Wu YH; Huang BC; Wang CY
    Food Res Int; 2022 Dec; 162(Pt A):112018. PubMed ID: 36461242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparative separation and purification of sulforaphene from radish seeds by high-speed countercurrent chromatography.
    Kuang P; Song D; Yuan Q; Lv X; Zhao D; Liang H
    Food Chem; 2013 Jan; 136(2):309-15. PubMed ID: 23122063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonal Effects of Glucosinolate and Sugar Content Determine the Pungency of Small-Type (Altari) Radishes (
    Chae SH; Lee ON; Park HY; Ku KM
    Plants (Basel); 2022 Jan; 11(3):. PubMed ID: 35161293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of cultivar, germination time and extraction for radish sprout extract with high sulforaphene content.
    Hur GH; Lee TK; Cho YJ; Kim JH; Park JHY; Yang H; Lee KW
    J Sci Food Agric; 2024 Jul; 104(9):5010-5020. PubMed ID: 38314949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The stability and degradation mechanism of sulforaphene in solvents.
    Tian G; Tang P; Xie R; Cheng L; Yuan Q; Hu J
    Food Chem; 2016 May; 199():301-6. PubMed ID: 26775975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation and purification of sulforaphene from radish seeds using macroporous resin and preparative high-performance liquid chromatography.
    Kuang P; Song D; Yuan Q; Yi R; Lv X; Liang H
    Food Chem; 2013 Jan; 136(2):342-7. PubMed ID: 23122068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster.
    Baenas N; Piegholdt S; Schloesser A; Moreno DA; GarcĂ­a-Viguera C; Rimbach G; Wagner AE
    Int J Mol Sci; 2016 Feb; 17(2):251. PubMed ID: 26901196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of aliphatic diamine spacer length on enzymatic performance of myrosinase immobilized on chitosan microsphere and its application for sulforaphene production.
    Zhang J; Feng C; Tan X; Hagedoorn PL; Gu C; Xu H; Zhou X
    J Biotechnol; 2019 Jun; 299():79-85. PubMed ID: 31042585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro-grinding-based production for sulforaphene-enriched radish seeds extract via facilitating glucosinolates-myrosinase reaction, and evaluation of its anti-adipogenic effects.
    Lee TK; Hur G; Kim JH; Park JHY; Yang H; Lee KW
    Food Chem; 2023 Dec; 429():136864. PubMed ID: 37506660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated utilization of red radish seeds for the efficient production of seed oil and sulforaphene.
    Zhang J; Zhou X; Fu M
    Food Chem; 2016 Feb; 192():541-7. PubMed ID: 26304382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of Apoptosis and Cytotoxicity by Raphasatin in Human Breast Adenocarcinoma MCF-7 Cells.
    Ibrahim MD; Kntayya SB; Mohd Ain N; Iori R; Ioannides C; Abdull Razis AF
    Molecules; 2018 Nov; 23(12):. PubMed ID: 30486382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and analysis of isothiocyanates and new acylated anthocyanins in the juice of Raphanus sativus cv. Sango sprouts.
    Matera R; Gabbanini S; De Nicola GR; Iori R; Petrillo G; Valgimigli L
    Food Chem; 2012 Jul; 133(2):563-72. PubMed ID: 25683434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of blue discoloration in radish root among different varieties and blue pigment stability analysis.
    Zhang Y; Zhao X; Ma Y; Jiang Y; Wang D; Liang H
    Food Chem; 2021 Mar; 340():128164. PubMed ID: 33011470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.