BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 26176026)

  • 21. Enzyme-inspired controlled release of cucurbit[7]uril nanovalves by using magnetic mesoporous silica.
    Liu J; Du X; Zhang X
    Chemistry; 2011 Jan; 17(3):810-5. PubMed ID: 21226095
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-coated interfacial layer at organic/inorganic phase for temporally controlling dual-drug delivery from electrospun fibers.
    Zhao X; Zhao J; Lin ZY; Pan G; Zhu Y; Cheng Y; Cui W
    Colloids Surf B Biointerfaces; 2015 Jun; 130():1-9. PubMed ID: 25879640
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An intelligent anticorrosion coating based on pH-responsive supramolecular nanocontainers.
    Chen T; Fu J
    Nanotechnology; 2012 Dec; 23(50):505705. PubMed ID: 23165151
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stimuli-Responsive Cucurbit[7]uril-Mediated BSA Nanoassembly for Uptake and Release of Doxorubicin.
    Barooah N; Kunwar A; Khurana R; Bhasikuttan AC; Mohanty J
    Chem Asian J; 2017 Jan; 12(1):122-129. PubMed ID: 27897384
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Light-triggered reversible assemblies of azobenzene-containing amphiphilic copolymer with β-cyclodextrin-modified hollow mesoporous silica nanoparticles for controlled drug release.
    Mei X; Yang S; Chen D; Li N; Li H; Xu Q; Ge J; Lu J
    Chem Commun (Camb); 2012 Oct; 48(80):10010-2. PubMed ID: 22946093
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cytochrome c end-capped mesoporous silica nanoparticles as redox-responsive drug delivery vehicles for liver tumor-targeted triplex therapy in vitro and in vivo.
    Zhang B; Luo Z; Liu J; Ding X; Li J; Cai K
    J Control Release; 2014 Oct; 192():192-201. PubMed ID: 25034575
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A multifunctional biphasic suspension of mesoporous silica encapsulated with YVO4:Eu3+ and Fe3O4 nanoparticles: synergistic effect towards cancer therapy and imaging.
    Shanta Singh N; Kulkarni H; Pradhan L; Bahadur D
    Nanotechnology; 2013 Feb; 24(6):065101. PubMed ID: 23324398
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of the stability of cucurbit[8]uril-based ternary host-guest complexation in physiological environment and the fabrication of a supramolecular theranostic nanomedicine.
    Wu H; Chen Z; Qi S; Bai B; Ye J; Wu D; Shen J; Kang F; Yu G
    J Nanobiotechnology; 2021 Oct; 19(1):330. PubMed ID: 34670552
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnetic Regulation of Thermo-Chemotherapy from a Cucurbit[7]uril-Crosslinked Hybrid Hydrogel.
    Qiao H; Jia J; Chen W; Di B; Scherman OA; Hu C
    Adv Healthc Mater; 2019 Jan; 8(2):e1801458. PubMed ID: 30548830
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells.
    Yu M; Jambhrunkar S; Thorn P; Chen J; Gu W; Yu C
    Nanoscale; 2013 Jan; 5(1):178-83. PubMed ID: 23076766
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mussel-inspired polydopamine coated mesoporous silica nanoparticles as pH-sensitive nanocarriers for controlled release.
    Zheng Q; Lin T; Wu H; Guo L; Ye P; Hao Y; Guo Q; Jiang J; Fu F; Chen G
    Int J Pharm; 2014 Mar; 463(1):22-6. PubMed ID: 24393764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reversible deformation-formation of a multistimuli responsive vesicle by a supramolecular peptide amphiphile.
    Mondal JH; Ahmed S; Ghosh T; Das D
    Soft Matter; 2015 Jun; 11(24):4912-20. PubMed ID: 26007304
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanovalve-controlled cargo release activated by plasmonic heating.
    Croissant J; Zink JI
    J Am Chem Soc; 2012 May; 134(18):7628-31. PubMed ID: 22540671
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Natural gelatin capped mesoporous silica nanoparticles for intracellular acid-triggered drug delivery.
    Zou Z; He D; He X; Wang K; Yang X; Qing Z; Zhou Q
    Langmuir; 2013 Oct; 29(41):12804-10. PubMed ID: 24073830
    [TBL] [Abstract][Full Text] [Related]  

  • 35. pH-controllable drug carrier with SERS activity for targeting cancer cells.
    Fang W; Wang Z; Zong S; Chen H; Zhu D; Zhong Y; Cui Y
    Biosens Bioelectron; 2014 Jul; 57():10-5. PubMed ID: 24525050
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel shell-like supramolecular assembly of 4,4'-bipyridyl derivatives and a twisted cucurbit[14]uril molecule.
    Liu Q; Li Q; Cheng XJ; Xi YY; Xiao B; Xiao X; Tang Q; Huang Y; Tao Z; Xue SF; Zhu QJ; Zhang JX
    Chem Commun (Camb); 2015 Jun; 51(49):9999-10001. PubMed ID: 26001212
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cucurbit[8]uril-based supramolecular nanocapsules with a multienzyme-cascade antioxidative effect.
    Liu S; Tian R; Xu J; Wang L; Sun J; Jiang X; Wang T; Li X; Luo Q; Liu J
    Chem Commun (Camb); 2019 Nov; 55(92):13820-13823. PubMed ID: 31664274
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Supramolecular Nanomedicine Constructed from Cucurbit[8]uril-Based Amphiphilic Brush Copolymer for Cancer Therapy.
    Wu D; Li Y; Yang J; Shen J; Zhou J; Hu Q; Yu G; Tang G; Chen X
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44392-44401. PubMed ID: 29205029
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A controlled-release nanocarrier with extracellular pH value driven tumor targeting and translocation for drug delivery.
    Zhao Z; Meng H; Wang N; Donovan MJ; Fu T; You M; Chen Z; Zhang X; Tan W
    Angew Chem Int Ed Engl; 2013 Jul; 52(29):7487-91. PubMed ID: 23757374
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A study of the Fenton-mediated oxidation of methylene blue-cucurbit[n]uril complexes.
    Fuenzalida T; Fuentealba D
    Photochem Photobiol Sci; 2015 Apr; 14(4):686-92. PubMed ID: 25573771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.