These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 26176213)

  • 1. Environmental Impact of Buildings--What Matters?
    Heeren N; Mutel CL; Steubing B; Ostermeyer Y; Wallbaum H; Hellweg S
    Environ Sci Technol; 2015 Aug; 49(16):9832-41. PubMed ID: 26176213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent Investigation on a Smart Kinetic Wooden Façade Based on Material Passport Concepts and Environmental Profile Inquiry.
    Almusaed A; Yitmen I; Almsaad A; Akiner İ; Akiner ME
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study on the environmental impact of greenhouses: A probabilistic approach.
    Golzar F; Heeren N; Hellweg S; Roshandel R
    Sci Total Environ; 2019 Jul; 675():560-569. PubMed ID: 31030161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What are we discarding during the life cycle of a building? Case studies of social housing in Andalusia, Spain.
    Marrero M; Rivero-Camacho C; Alba-Rodríguez MD
    Waste Manag; 2020 Feb; 102():391-403. PubMed ID: 31733563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Template for Evaluating Cradle-to-Site Environmental Life Cycle Impacts of Buildings in India.
    Chaudhary A; Akhtar A
    ACS Environ Au; 2023 Mar; 3(2):94-104. PubMed ID: 37102085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal performance of energy-efficient buildings for sustainable development.
    Vijayan DS; Sivasuriyan A; Patchamuthu P; Jayaseelan R
    Environ Sci Pollut Res Int; 2022 Jul; 29(34):51130-51142. PubMed ID: 34845641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Introducing a conceptual model for evaluating health safety environmental performance of residential buildings using the fuzzy decision-making approach.
    Motaghifard A; Omidvari M; Kaazemi A
    Environ Monit Assess; 2019 Dec; 192(1):19. PubMed ID: 31820115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional unit, technological dynamics, and scaling properties for the life cycle energy of residences.
    Frijia S; Guhathakurta S; Williams E
    Environ Sci Technol; 2012 Feb; 46(3):1782-8. PubMed ID: 22192002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Changes in the physical environmental factors in modern buildings related to the use of polymeric construction materials].
    Lozanov L
    Probl Khig; 1985; 10():117-25. PubMed ID: 3835559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decarbonization potentials of the embodied energy use and operational process in buildings: A review from the life-cycle perspective.
    Liang Y; Li C; Liu Z; Wang X; Zeng F; Yuan X; Pan Y
    Heliyon; 2023 Oct; 9(10):e20190. PubMed ID: 37810847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of Location and Insulation Material on Energy Performance of Residential Buildings as per Saudi Building Code (SBC) 601/602 in Saudi Arabia.
    Alyami SH; Alqahtany A; Ashraf N; Osman A; Aldossary NA; Almutlaqa A; Al-Maziad F; Alshammari MS; Al-Gehlani WAG
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated pipeline framework for processing of large-scale building energy time series data.
    Khalilnejad A; Karimi AM; Kamath S; Haddadian R; French RH; Abramson AR
    PLoS One; 2020; 15(12):e0240461. PubMed ID: 33259504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Future Growth Model for Building More Housing and Infrastructure with Less Embodied Greenhouse Gas.
    Rankin KH; Saxe S
    Environ Sci Technol; 2024 Jun; 58(25):10979-10990. PubMed ID: 38868922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An attributional life cycle assessment for an Italian residential multifamily building.
    Vitale P; Arena U
    Environ Technol; 2018 Dec; 39(23):3033-3045. PubMed ID: 28831851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A preliminary simulation study about the impact of COVID-19 crisis on energy demand of a building mix at a district in Sweden.
    Zhang X; Pellegrino F; Shen J; Copertaro B; Huang P; Kumar Saini P; Lovati M
    Appl Energy; 2020 Dec; 280():115954. PubMed ID: 33100481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate impacts on extreme energy consumption of different types of buildings.
    Li M; Shi J; Guo J; Cao J; Niu J; Xiong M
    PLoS One; 2015; 10(4):e0124413. PubMed ID: 25923205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the use of residential thermal stations in different types of buildings.
    Cholewa T; Siuta-Olcha A
    Environ Sci Pollut Res Int; 2021 Mar; 28(12):14310-14318. PubMed ID: 31989500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating the material stock in wooden residential houses in Finland.
    Nasiri B; Piccardo C; Hughes M
    Waste Manag; 2021 Nov; 135():318-326. PubMed ID: 34563879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Geospatial Modeling of the Building Stock To Project Urban Energy Demand.
    Breunig HM; Huntington T; Jin L; Robinson A; Scown CD
    Environ Sci Technol; 2018 Jul; 52(14):7604-7613. PubMed ID: 29944351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the Environmental Impact of Construction within the Industrialized Building Process: A Monetization and Building Information Modelling Approach.
    Yao F; Liu G; Ji Y; Tong W; Du X; Li K; Shrestha A; Martek I
    Int J Environ Res Public Health; 2020 Nov; 17(22):. PubMed ID: 33202770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.