These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 26176744)

  • 1. Adaptive Synaptogenesis Constructs Neural Codes That Benefit Discrimination.
    Thomas BT; Blalock DW; Levy WB
    PLoS Comput Biol; 2015 Jul; 11(7):e1004299. PubMed ID: 26176744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hebbian Wiring Plasticity Generates Efficient Network Structures for Robust Inference with Synaptic Weight Plasticity.
    Hiratani N; Fukai T
    Front Neural Circuits; 2016; 10():41. PubMed ID: 27303271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Representation of input structure in synaptic weights by spike-timing-dependent plasticity.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021912. PubMed ID: 20866842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal learning in analog neural networks using spike-timing-dependent synaptic plasticity.
    Yoshioka M; Scarpetta S; Marinaro M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051917. PubMed ID: 17677108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of synaptic plasticity on the structure and dynamics of disordered networks of coupled neurons.
    Bayati M; Valizadeh A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011925. PubMed ID: 23005470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning in neural networks by reinforcement of irregular spiking.
    Xie X; Seung HS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 1):041909. PubMed ID: 15169045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic afferent synapses to decision-making networks improve performance in tasks requiring stimulus associations and discriminations.
    Bourjaily MA; Miller P
    J Neurophysiol; 2012 Jul; 108(2):513-27. PubMed ID: 22457467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning the structure of correlated synaptic subgroups using stable and competitive spike-timing-dependent plasticity.
    Meffin H; Besson J; Burkitt AN; Grayden DB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041911. PubMed ID: 16711840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning only when necessary: better memories of correlated patterns in networks with bounded synapses.
    Senn W; Fusi S
    Neural Comput; 2005 Oct; 17(10):2106-38. PubMed ID: 16105220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive synaptogenesis constructs networks that maintain information and reduce statistical dependence.
    Adelsberger-Mangan DM; Levy WB
    Biol Cybern; 1993; 70(1):81-7. PubMed ID: 8312400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning to discriminate through long-term changes of dynamical synaptic transmission.
    Leibold C; Bendels MH
    Neural Comput; 2009 Dec; 21(12):3408-28. PubMed ID: 19764877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model of cerebellar metaplasticity.
    Schweighofer N; Arbib MA
    Learn Mem; 1998; 4(5):421-8. PubMed ID: 10701881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal structure of metaplasticity for adaptive learning.
    Khorsand P; Soltani A
    PLoS Comput Biol; 2017 Jun; 13(6):e1005630. PubMed ID: 28658247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supervised learning through neuronal response modulation.
    Swinehart CD; Abbott LF
    Neural Comput; 2005 Mar; 17(3):609-31. PubMed ID: 15802008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic plasticity: taming the beast.
    Abbott LF; Nelson SB
    Nat Neurosci; 2000 Nov; 3 Suppl():1178-83. PubMed ID: 11127835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comment on "Adaptive Q-S (lag, anticipated, and complete) time-varying synchronization and parameters identification of uncertain delayed neural networks" [Chaos 16, 023119 (2006)].
    Li L; Yang Y; Peng H
    Chaos; 2007 Sep; 17(3):038101; discussion 038102. PubMed ID: 17903027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive self-organization in a realistic neural network model.
    Meisel C; Gross T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061917. PubMed ID: 20365200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal avalanches of a self-organized neural network with active-neuron-dominant structure.
    Li X; Small M
    Chaos; 2012 Jun; 22(2):023104. PubMed ID: 22757511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of spike-time-dependent plasticity on the stochastic resonance of small-world neuronal networks.
    Yu H; Guo X; Wang J; Deng B; Wei X
    Chaos; 2014 Sep; 24(3):033125. PubMed ID: 25273205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.