BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 26176784)

  • 1. Expression and Misexpression of the miR-183 Family in the Developing Hearing Organ of the Chicken.
    Zhang KD; Stoller ML; Fekete DM
    PLoS One; 2015; 10(7):e0132796. PubMed ID: 26176784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNA-183 family members regulate sensorineural fates in the inner ear.
    Li H; Kloosterman W; Fekete DM
    J Neurosci; 2010 Mar; 30(9):3254-63. PubMed ID: 20203184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Jxc1/Sobp, encoding a nuclear zinc finger protein, is critical for cochlear growth, cell fate, and patterning of the organ of corti.
    Chen Z; Montcouquiol M; Calderon R; Jenkins NA; Copeland NG; Kelley MW; Noben-Trauth K
    J Neurosci; 2008 Jun; 28(26):6633-41. PubMed ID: 18579736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MiR-210 promotes sensory hair cell formation in the organ of corti.
    Riccardi S; Bergling S; Sigoillot F; Beibel M; Werner A; Leighton-Davies J; Knehr J; Bouwmeester T; Parker CN; Roma G; Kinzel B
    BMC Genomics; 2016 Apr; 17():309. PubMed ID: 27121005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of class III Semaphorins and their receptors in the developing chicken (Gallus gallus) inner ear.
    Scott MK; Yue J; Biesemeier DJ; Lee JW; Fekete DM
    J Comp Neurol; 2019 May; 527(7):1196-1209. PubMed ID: 30520042
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Evsen L; Li X; Zhang S; Razin S; Doetzlhofer A
    Development; 2020 Aug; 147(15):. PubMed ID: 32816902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Somatostatin receptor types 1 and 2 in the developing mammalian cochlea.
    Bodmer D; Brand Y; Radojevic V
    Dev Neurosci; 2012; 34(4):342-53. PubMed ID: 22986312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MicroRNA-183 family expression in hair cell development and requirement of microRNAs for hair cell maintenance and survival.
    Weston MD; Pierce ML; Jensen-Smith HC; Fritzsch B; Rocha-Sanchez S; Beisel KW; Soukup GA
    Dev Dyn; 2011 Apr; 240(4):808-19. PubMed ID: 21360794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNA gene expression in the mouse inner ear.
    Weston MD; Pierce ML; Rocha-Sanchez S; Beisel KW; Soukup GA
    Brain Res; 2006 Sep; 1111(1):95-104. PubMed ID: 16904081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lineage analysis of the late otocyst stage mouse inner ear by transuterine microinjection of a retroviral vector encoding alkaline phosphatase and an oligonucleotide library.
    Jiang H; Wang L; Beier KT; Cepko CL; Fekete DM; Brigande JV
    PLoS One; 2013; 8(7):e69314. PubMed ID: 23935981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auditory ganglion source of Sonic hedgehog regulates timing of cell cycle exit and differentiation of mammalian cochlear hair cells.
    Bok J; Zenczak C; Hwang CH; Wu DK
    Proc Natl Acad Sci U S A; 2013 Aug; 110(34):13869-74. PubMed ID: 23918393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular commitment and differentiation in the organ of Corti.
    Kelley MW
    Int J Dev Biol; 2007; 51(6-7):571-83. PubMed ID: 17891718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression profiles of the connexin genes, Gjb1 and Gjb3, in the developing mouse cochlea.
    López-Bigas N; Arbonés ML; Estivill X; Simonneau L
    Gene Expr Patterns; 2002 Nov; 2(1-2):113-7. PubMed ID: 12617848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HMGA2, the architectural transcription factor high mobility group, is expressed in the developing and mature mouse cochlea.
    Smeti I; Watabe I; Savary E; Fontbonne A; Zine A
    PLoS One; 2014; 9(2):e88757. PubMed ID: 24551154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-cell-autonomous planar cell polarity propagation in the auditory sensory epithelium of vertebrates.
    Sienknecht UJ; Anderson BK; Parodi RM; Fantetti KN; Fekete DM
    Dev Biol; 2011 Apr; 352(1):27-39. PubMed ID: 21255565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fgf signaling regulates development and transdifferentiation of hair cells and supporting cells in the basilar papilla.
    Jacques BE; Dabdoub A; Kelley MW
    Hear Res; 2012 Jul; 289(1-2):27-39. PubMed ID: 22575790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wnt9a Can Influence Cell Fates and Neural Connectivity across the Radial Axis of the Developing Cochlea.
    Munnamalai V; Sienknecht UJ; Duncan RK; Scott MK; Thawani A; Fantetti KN; Atallah NM; Biesemeier DJ; Song KH; Luethy K; Traub E; Fekete DM
    J Neurosci; 2017 Sep; 37(37):8975-8988. PubMed ID: 28821654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hedgehog signaling regulates prosensory cell properties during the basal-to-apical wave of hair cell differentiation in the mammalian cochlea.
    Tateya T; Imayoshi I; Tateya I; Hamaguchi K; Torii H; Ito J; Kageyama R
    Development; 2013 Sep; 140(18):3848-57. PubMed ID: 23946445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specification of cell fate in the mammalian cochlea.
    Driver EC; Kelley MW
    Birth Defects Res C Embryo Today; 2009 Sep; 87(3):212-21. PubMed ID: 19750520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Canonical Notch signaling is not necessary for prosensory induction in the mouse cochlea: insights from a conditional mutant of RBPjkappa.
    Basch ML; Ohyama T; Segil N; Groves AK
    J Neurosci; 2011 Jun; 31(22):8046-58. PubMed ID: 21632926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.