BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 26176821)

  • 1. Combustion kinetics of hydrochar produced from hydrothermal carbonisation of Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis.
    Islam MA; Kabir G; Asif M; Hameed BH
    Bioresour Technol; 2015 Oct; 194():14-20. PubMed ID: 26176821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrolysis kinetics of raw and hydrothermally carbonized Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis.
    Islam MA; Asif M; Hameed BH
    Bioresour Technol; 2015 Mar; 179():227-233. PubMed ID: 25545092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A thermogravimetric analysis of the combustion kinetics of karanja (Pongamia pinnata) fruit hulls char.
    Islam MA; Auta M; Kabir G; Hameed BH
    Bioresour Technol; 2016 Jan; 200():335-41. PubMed ID: 26512856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fuel properties and combustion kinetics of hydrochar prepared by hydrothermal carbonization of bamboo.
    Yang W; Wang H; Zhang M; Zhu J; Zhou J; Wu S
    Bioresour Technol; 2016 Apr; 205():199-204. PubMed ID: 26826960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermogravimetric investigation of hydrochar-lignite co-combustion.
    Liu Z; Quek A; Kent Hoekman S; Srinivasan MP; Balasubramanian R
    Bioresour Technol; 2012 Nov; 123():646-52. PubMed ID: 22960124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-hydrothermal carbonization of corn stalk and swine manure: Combustion behavior of hydrochar by thermogravimetric analysis.
    Lang Q; Zhang B; Liu Z; Chen Z; Xia Y; Li D; Ma J; Gai C
    Bioresour Technol; 2019 Jan; 271():75-83. PubMed ID: 30265955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches.
    Parshetti GK; Kent Hoekman S; Balasubramanian R
    Bioresour Technol; 2013 May; 135():683-9. PubMed ID: 23127830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic CO
    Lahijani P; Mohammadi M; Mohamed AR
    Environ Sci Pollut Res Int; 2019 Apr; 26(12):11767-11780. PubMed ID: 30815812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of kinetic parameters for biomass combustion.
    Álvarez A; Pizarro C; García R; Bueno JL; Lavín AG
    Bioresour Technol; 2016 Sep; 216():36-43. PubMed ID: 27233095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrothermal carbonization of corncob for hydrochar production and its combustion reactivity in a blast furnace.
    An Q; Wang Q; Zhai J
    Environ Sci Pollut Res Int; 2024 Mar; 31(11):16653-16666. PubMed ID: 38319417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyrolysis kinetics and thermodynamic parameters of the hydrochars derived from co-hydrothermal carbonization of sawdust and sewage sludge using thermogravimetric analysis.
    Ma J; Luo H; Li Y; Liu Z; Li D; Gai C; Jiao W
    Bioresour Technol; 2019 Jun; 282():133-141. PubMed ID: 30852333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal behaviour of hydrochar derived from hydrothermal carbonization of food waste using leachate as moisture source: Kinetic and thermodynamic analysis.
    Periyavaram SR; Uppala L; Sivaprakash S; Reddy PHP
    Bioresour Technol; 2023 Apr; 373():128734. PubMed ID: 36791981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of liquid and vapor hydrothermal carbonization of corn husk for the use as a solid fuel.
    Minaret J; Dutta A
    Bioresour Technol; 2016 Jan; 200():804-11. PubMed ID: 26584229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrothermal carbonisation of sewage sludge: effect of process conditions on product characteristics and methane production.
    Danso-Boateng E; Shama G; Wheatley AD; Martin SJ; Holdich RG
    Bioresour Technol; 2015 Feb; 177():318-27. PubMed ID: 25496954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physicochemical, structural and combustion characterization of food waste hydrochar obtained by hydrothermal carbonization.
    Saqib NU; Baroutian S; Sarmah AK
    Bioresour Technol; 2018 Oct; 266():357-363. PubMed ID: 29982058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavior of selected hydrolyzed and dehydrated products during hydrothermal carbonization of biomass.
    Reza MT; Wirth B; Lüder U; Werner M
    Bioresour Technol; 2014 Oct; 169():352-361. PubMed ID: 25063978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrothermal carbonization of tobacco stalk for fuel application.
    Cai J; Li B; Chen C; Wang J; Zhao M; Zhang K
    Bioresour Technol; 2016 Nov; 220():305-311. PubMed ID: 27589825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non isothermal model free kinetics for pyrolysis of rice straw.
    Mishra G; Bhaskar T
    Bioresour Technol; 2014 Oct; 169():614-621. PubMed ID: 25105267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis.
    Ceylan S; Topçu Y
    Bioresour Technol; 2014 Mar; 156():182-8. PubMed ID: 24508656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combustion kinetics of hydrochar from cow-manure digestate via thermogravimetric analysis and peak deconvolution.
    Benedetti V; Pecchi M; Baratieri M
    Bioresour Technol; 2022 Jun; 353():127142. PubMed ID: 35413420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.