These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
357 related articles for article (PubMed ID: 26176857)
21. Accurate in silico identification of protein succinylation sites using an iterative semi-supervised learning technique. Zhao X; Ning Q; Chai H; Ma Z J Theor Biol; 2015 Jun; 374():60-5. PubMed ID: 25843215 [TBL] [Abstract][Full Text] [Related]
22. DNABP: Identification of DNA-Binding Proteins Based on Feature Selection Using a Random Forest and Predicting Binding Residues. Ma X; Guo J; Sun X PLoS One; 2016; 11(12):e0167345. PubMed ID: 27907159 [TBL] [Abstract][Full Text] [Related]
23. Prediction of microRNA-binding residues in protein using a Laplacian support vector machine based on sequence information. Ma X; Guo J; Sun X J Bioinform Comput Biol; 2018 Jun; 16(3):1840009. PubMed ID: 29591488 [TBL] [Abstract][Full Text] [Related]
24. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search. Garg A; Raghava GP In Silico Biol; 2008; 8(2):129-40. PubMed ID: 18928201 [TBL] [Abstract][Full Text] [Related]
25. Predicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure. Song J; Yuan Z; Tan H; Huber T; Burrage K Bioinformatics; 2007 Dec; 23(23):3147-54. PubMed ID: 17942444 [TBL] [Abstract][Full Text] [Related]
26. Correlation and prediction of gene expression level from amino acid and dipeptide composition of its protein. Raghava GP; Han JH BMC Bioinformatics; 2005 Mar; 6():59. PubMed ID: 15773999 [TBL] [Abstract][Full Text] [Related]
27. Prediction of 3D metal binding sites from translated gene sequences based on remote-homology templates. Levy R; Edelman M; Sobolev V Proteins; 2009 Aug; 76(2):365-74. PubMed ID: 19173310 [TBL] [Abstract][Full Text] [Related]
28. iDNA-Prot|dis: identifying DNA-binding proteins by incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition. Liu B; Xu J; Lan X; Xu R; Zhou J; Wang X; Chou KC PLoS One; 2014; 9(9):e106691. PubMed ID: 25184541 [TBL] [Abstract][Full Text] [Related]
29. Analysis and prediction of leucine-rich nuclear export signals. la Cour T; Kiemer L; Mølgaard A; Gupta R; Skriver K; Brunak S Protein Eng Des Sel; 2004 Jun; 17(6):527-36. PubMed ID: 15314210 [TBL] [Abstract][Full Text] [Related]
30. Improving the prediction of protein-nucleic acids binding residues via multiple sequence profiles and the consensus of complementary methods. Su H; Liu M; Sun S; Peng Z; Yang J Bioinformatics; 2019 Mar; 35(6):930-936. PubMed ID: 30169574 [TBL] [Abstract][Full Text] [Related]
31. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers. Barenboim M; Masso M; Vaisman II; Jamison DC Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470 [TBL] [Abstract][Full Text] [Related]
32. A comprehensive comparative review of sequence-based predictors of DNA- and RNA-binding residues. Yan J; Friedrich S; Kurgan L Brief Bioinform; 2016 Jan; 17(1):88-105. PubMed ID: 25935161 [TBL] [Abstract][Full Text] [Related]
33. GANN: genetic algorithm neural networks for the detection of conserved combinations of features in DNA. Beiko RG; Charlebois RL BMC Bioinformatics; 2005 Feb; 6():36. PubMed ID: 15725347 [TBL] [Abstract][Full Text] [Related]
34. Accurate prediction of RNA-binding protein residues with two discriminative structural descriptors. Sun M; Wang X; Zou C; He Z; Liu W; Li H BMC Bioinformatics; 2016 Jun; 17(1):231. PubMed ID: 27266516 [TBL] [Abstract][Full Text] [Related]
35. MSLoc-DT: a new method for predicting the protein subcellular location of multispecies based on decision templates. Zhang SW; Liu YF; Yu Y; Zhang TH; Fan XN Anal Biochem; 2014 Mar; 449():164-71. PubMed ID: 24361712 [TBL] [Abstract][Full Text] [Related]
36. Prediction Enhancement of Residue Real-Value Relative Accessible Surface Area in Transmembrane Helical Proteins by Solving the Output Preference Problem of Machine Learning-Based Predictors. Xiao F; Shen HB J Chem Inf Model; 2015 Nov; 55(11):2464-74. PubMed ID: 26455366 [TBL] [Abstract][Full Text] [Related]
37. TargetDBP: Accurate DNA-Binding Protein Prediction Via Sequence-Based Multi-View Feature Learning. Hu J; Zhou XG; Zhu YH; Yu DJ; Zhang GJ IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1419-1429. PubMed ID: 30668479 [TBL] [Abstract][Full Text] [Related]
38. HemeBIND: a novel method for heme binding residue prediction by combining structural and sequence information. Liu R; Hu J BMC Bioinformatics; 2011 May; 12():207. PubMed ID: 21612668 [TBL] [Abstract][Full Text] [Related]
39. FAST: a novel protein structure alignment algorithm. Zhu J; Weng Z Proteins; 2005 Feb; 58(3):618-27. PubMed ID: 15609341 [TBL] [Abstract][Full Text] [Related]
40. Prediction of protein-RNA binding sites by a random forest method with combined features. Liu ZP; Wu LY; Wang Y; Zhang XS; Chen L Bioinformatics; 2010 Jul; 26(13):1616-22. PubMed ID: 20483814 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]