BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 26176995)

  • 1. Involvement of BcStr2 in methionine biosynthesis, vegetative differentiation, multiple stress tolerance and virulence in Botrytis cinerea.
    Shao W; Yang Y; Zhang Y; Lv C; Ren W; Chen C
    Mol Plant Pathol; 2016 Apr; 17(3):438-47. PubMed ID: 26176995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The response regulator BcSkn7 is required for vegetative differentiation and adaptation to oxidative and osmotic stresses in Botrytis cinerea.
    Yang Q; Yin D; Yin Y; Cao Y; Ma Z
    Mol Plant Pathol; 2015 Apr; 16(3):276-87. PubMed ID: 25130972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mitogen-activated protein kinase kinase BOS5 is involved in regulating vegetative differentiation and virulence in Botrytis cinerea.
    Yan L; Yang Q; Sundin GW; Li H; Ma Z
    Fungal Genet Biol; 2010 Sep; 47(9):753-60. PubMed ID: 20595070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The autophagy-related gene BcATG1 is involved in fungal development and pathogenesis in Botrytis cinerea.
    Ren W; Zhang Z; Shao W; Yang Y; Zhou M; Chen C
    Mol Plant Pathol; 2017 Feb; 18(2):238-248. PubMed ID: 26972592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Autophagy Gene
    Ren W; Liu N; Sang C; Shi D; Zhou M; Chen C; Qin Q; Chen W
    Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29572212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cystathionine gamma-synthase is essential for methionine biosynthesis in Fusarium graminearum.
    Fu J; Wu J; Jiang J; Wang Z; Ma Z
    Fungal Biol; 2013 Jan; 117(1):13-21. PubMed ID: 23332829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mitogen-activated protein kinase kinase kinase BcOs4 is required for vegetative differentiation and pathogenicity in Botrytis cinerea.
    Yang Q; Yan L; Gu Q; Ma Z
    Appl Microbiol Biotechnol; 2012 Oct; 96(2):481-92. PubMed ID: 22526788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of two type 2C protein phosphatases BcPtc1 and BcPtc3 in the regulation of multiple stress tolerance and virulence of Botrytis cinerea.
    Yang Q; Jiang J; Mayr C; Hahn M; Ma Z
    Environ Microbiol; 2013 Oct; 15(10):2696-711. PubMed ID: 23601355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel Botrytis cinerea-specific gene BcHBF1 enhances virulence of the grey mould fungus via promoting host penetration and invasive hyphal development.
    Liu Y; Liu JK; Li GH; Zhang MZ; Zhang YY; Wang YY; Hou J; Yang S; Sun J; Qin QM
    Mol Plant Pathol; 2019 May; 20(5):731-747. PubMed ID: 31008573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of the cysteine protease BcAtg4 in development and virulence of Botrytis cinerea.
    Liu N; Ren W; Li F; Chen C; Ma Z
    Curr Genet; 2019 Feb; 65(1):293-300. PubMed ID: 30167777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of BcVeA and BcVelB in regulating conidiation, pigmentation and virulence in Botrytis cinerea.
    Yang Q; Chen Y; Ma Z
    Fungal Genet Biol; 2013 Jan; 50():63-71. PubMed ID: 23147398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BcMtg2 is required for multiple stress tolerance, vegetative development and virulence in Botrytis cinerea.
    Shao W; Zhang Y; Wang J; Lv C; Chen C
    Sci Rep; 2016 Jun; 6():28673. PubMed ID: 27346661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of BcElp4 in vegetative development, various environmental stress response and virulence of Botrytis cinerea.
    Shao W; Lv C; Zhang Y; Wang J; Chen C
    Microb Biotechnol; 2017 Jul; 10(4):886-895. PubMed ID: 28474462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane protein Bcsdr2 mediates biofilm integrity, hyphal growth and virulence of Botrytis cinerea.
    Zhang W; Cao Y; Li H; Rasmey AM; Zhang K; Shi L; Ge B
    Appl Microbiol Biotechnol; 2024 Jun; 108(1):398. PubMed ID: 38940906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of protein tyrosine phosphatases BcPtpA and BcPtpB in regulation of vegetative development, virulence and multi-stress tolerance in Botrytis cinerea.
    Yang Q; Yu F; Yin Y; Ma Z
    PLoS One; 2013; 8(4):e61307. PubMed ID: 23585890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defects in the Ferroxidase That Participates in the Reductive Iron Assimilation System Results in Hypervirulence in
    Vasquez-Montaño E; Hoppe G; Vega A; Olivares-Yañez C; Canessa P
    mBio; 2020 Aug; 11(4):. PubMed ID: 32753496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BcMctA, a putative monocarboxylate transporter, is required for pathogenicity in Botrytis cinerea.
    Cui Z; Gao N; Wang Q; Ren Y; Wang K; Zhu T
    Curr Genet; 2015 Nov; 61(4):545-53. PubMed ID: 25634672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of FgERG4 in ergosterol biosynthesis, vegetative differentiation and virulence in Fusarium graminearum.
    Liu X; Jiang J; Yin Y; Ma Z
    Mol Plant Pathol; 2013 Jan; 14(1):71-83. PubMed ID: 22947191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of a putative response regulator Brrg-1 in the regulation of sporulation, sensitivity to fungicides, and osmotic stress in Botrytis cinerea.
    Yan L; Yang Q; Jiang J; Michailides TJ; Ma Z
    Appl Microbiol Biotechnol; 2011 Apr; 90(1):215-26. PubMed ID: 21161211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ubiquitin-like activating enzymes BcAtg3 and BcAtg7 participate in development and pathogenesis of Botrytis cinerea.
    Ren W; Sang C; Shi D; Song X; Zhou M; Chen C
    Curr Genet; 2018 Aug; 64(4):919-930. PubMed ID: 29417220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.