These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 26176995)

  • 41. Proteomic profiling of Botrytis cinerea conidial germination.
    González-Rodríguez VE; Liñeiro E; Colby T; Harzen A; Garrido C; Cantoral JM; Schmidt J; Fernández-Acero FJ
    Arch Microbiol; 2015 Mar; 197(2):117-33. PubMed ID: 25141797
    [TBL] [Abstract][Full Text] [Related]  

  • 42. bcpmr1 encodes a P-type Ca(2+)/Mn(2+)-ATPase mediating cell-wall integrity and virulence in the phytopathogen Botrytis cinerea.
    Plaza V; Lagües Y; Carvajal M; Pérez-García LA; Mora-Montes HM; Canessa P; Larrondo LF; Castillo L
    Fungal Genet Biol; 2015 Mar; 76():36-46. PubMed ID: 25677379
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Calcineurin-responsive zinc finger transcription factor CRZ1 of Botrytis cinerea is required for growth, development, and full virulence on bean plants.
    Schumacher J; de Larrinoa IF; Tudzynski B
    Eukaryot Cell; 2008 Apr; 7(4):584-601. PubMed ID: 18263765
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Function of small GTPase Rho3 in regulating growth, conidiation and virulence of Botrytis cinerea.
    An B; Li B; Qin G; Tian S
    Fungal Genet Biol; 2015 Feb; 75():46-55. PubMed ID: 25624070
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transcriptome analysis and functional validation reveal a novel gene, BcCGF1, that enhances fungal virulence by promoting infection-related development and host penetration.
    Zhang MZ; Sun CH; Liu Y; Feng HQ; Chang HW; Cao SN; Li GH; Yang S; Hou J; Zhu-Salzman K; Zhang H; Qin QM
    Mol Plant Pathol; 2020 Jun; 21(6):834-853. PubMed ID: 32301267
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Detection and fitness comparison of target-based highly fludioxonil-resistant isolates of Botrytis cinerea from strawberry and cucumber in China.
    Sang C; Ren W; Wang J; Xu H; Zhang Z; Zhou M; Chen C; Wang K
    Pestic Biochem Physiol; 2018 May; 147():110-118. PubMed ID: 29933980
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Disruption of the Bcchs3a chitin synthase gene in Botrytis cinerea is responsible for altered adhesion and overstimulation of host plant immunity.
    Arbelet D; Malfatti P; Simond-Côte E; Fontaine T; Desquilbet L; Expert D; Kunz C; Soulié MC
    Mol Plant Microbe Interact; 2010 Oct; 23(10):1324-34. PubMed ID: 20672878
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Functional analysis of diacylglycerol O-acyl transferase 2 gene to decipher its role in virulence of Botrytis cinerea.
    Sharma E; Tayal P; Anand G; Mathur P; Kapoor R
    Curr Genet; 2018 Apr; 64(2):443-457. PubMed ID: 28940057
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The VELVET Complex in the Gray Mold Fungus Botrytis cinerea: Impact of BcLAE1 on Differentiation, Secondary Metabolism, and Virulence.
    Schumacher J; Simon A; Cohrs KC; Traeger S; Porquier A; Dalmais B; Viaud M; Tudzynski B
    Mol Plant Microbe Interact; 2015 Jun; 28(6):659-74. PubMed ID: 25625818
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Botrytis cinerea hexokinase, Hxk1, but not the glucokinase, Glk1, is required for normal growth and sugar metabolism, and for pathogenicity on fruits.
    Rui O; Hahn M
    Microbiology (Reading); 2007 Aug; 153(Pt 8):2791-2802. PubMed ID: 17660443
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The small GTPase BcCdc42 affects nuclear division, germination and virulence of the gray mold fungus Botrytis cinerea.
    Kokkelink L; Minz A; Al-Masri M; Giesbert S; Barakat R; Sharon A; Tudzynski P
    Fungal Genet Biol; 2011 Nov; 48(11):1012-9. PubMed ID: 21839848
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Exocyst subunit
    Ma Z; Chen Z; Wang W; Wang K; Zhu T
    J Biosci; 2020; 45():. PubMed ID: 33184241
    [No Abstract]   [Full Text] [Related]  

  • 53. BcAtf1, a global regulator, controls various differentiation processes and phytotoxin production in Botrytis cinerea.
    Temme N; Oeser B; Massaroli M; Heller J; Simon A; Collado IG; Viaud M; Tudzynski P
    Mol Plant Pathol; 2012 Sep; 13(7):704-18. PubMed ID: 22293085
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The pH regulator PacC: a host-dependent virulence factor in Botrytis cinerea.
    Rascle C; Dieryckx C; Dupuy JW; Muszkieta L; Souibgui E; Droux M; Bruel C; Girard V; Poussereau N
    Environ Microbiol Rep; 2018 Oct; 10(5):555-568. PubMed ID: 30066486
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Trichothecenes and aspinolides produced by Trichoderma arundinaceum regulate expression of Botrytis cinerea genes involved in virulence and growth.
    Malmierca MG; Izquierdo-Bueno I; McCormick SP; Cardoza RE; Alexander NJ; Barua J; Lindo L; Casquero PA; Collado IG; Monte E; Gutiérrez S
    Environ Microbiol; 2016 Nov; 18(11):3991-4004. PubMed ID: 27312485
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Single Nucleotide Mutation in Adenylate Cyclase Affects Vegetative Growth, Sclerotial Formation and Virulence of
    Chen X; Zhang X; Zhu P; Wang Y; Na Y; Guo H; Cai Y; Nie H; Jiang Y; Xu L
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32326350
    [No Abstract]   [Full Text] [Related]  

  • 57. A class III histidine kinase acts as a novel virulence factor in Botrytis cinerea.
    Viaud M; Fillinger S; Liu W; Polepalli JS; Le Pêcheur P; Kunduru AR; Leroux P; Legendre L
    Mol Plant Microbe Interact; 2006 Sep; 19(9):1042-50. PubMed ID: 16941908
    [TBL] [Abstract][Full Text] [Related]  

  • 58. BcSas2-Mediated Histone H4K16 Acetylation Is Critical for Virulence and Oxidative Stress Response of
    Wang G; Song L; Bai T; Liang W
    Mol Plant Microbe Interact; 2020 Oct; 33(10):1242-1251. PubMed ID: 32689887
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Alternative Oxidase Is Involved in the Pathogenicity, Development, and Oxygen Stress Response of
    Lin Z; Wu J; Jamieson PA; Zhang C
    Phytopathology; 2019 Oct; 109(10):1679-1688. PubMed ID: 31479404
    [TBL] [Abstract][Full Text] [Related]  

  • 60. LongSAGE gene-expression profiling of Botrytis cinerea germination suppressed by resveratrol, the major grapevine phytoalexin.
    Zheng C; Choquer M; Zhang B; Ge H; Hu S; Ma H; Chen S
    Fungal Biol; 2011 Sep; 115(9):815-32. PubMed ID: 21872179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.