BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 26177254)

  • 1. Information Flow Between Resting-State Networks.
    Diez I; Erramuzpe A; Escudero I; Mateos B; Cabrera A; Marinazzo D; Sanz-Arigita EJ; Stramaglia S; Cortes Diaz JM;
    Brain Connect; 2015 Nov; 5(9):554-64. PubMed ID: 26177254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional Activity and Connectivity Differences of Five Resting-State Networks in Patients with Alzheimer's Disease or Mild Cognitive Impairment.
    Chen Y; Yan H; Han Z; Bi Y; Chen H; Liu J; Wu M; Wang Y; Zhang Y
    Curr Alzheimer Res; 2016; 13(3):234-42. PubMed ID: 26906355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the effective connectivity of resting state networks in Alzheimer's disease: a functional MRI study combining independent components analysis and multivariate Granger causality analysis.
    Liu Z; Zhang Y; Bai L; Yan H; Dai R; Zhong C; Wang H; Wei W; Xue T; Feng Y; You Y; Tian J
    NMR Biomed; 2012 Dec; 25(12):1311-20. PubMed ID: 22505275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating the effective connectivity of resting state networks using conditional Granger causality.
    Liao W; Mantini D; Zhang Z; Pan Z; Ding J; Gong Q; Yang Y; Chen H
    Biol Cybern; 2010 Jan; 102(1):57-69. PubMed ID: 19937337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks.
    Yuan H; Zotev V; Phillips R; Drevets WC; Bodurka J
    Neuroimage; 2012 May; 60(4):2062-72. PubMed ID: 22381593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain-wide mapping of resting-state networks in mice using high-frame rate functional ultrasound.
    Hikishima K; Tsurugizawa T; Kasahara K; Takagi R; Yoshinaka K; Nitta N
    Neuroimage; 2023 Oct; 279():120297. PubMed ID: 37500027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A NIRS-fMRI study of resting state network.
    Sasai S; Homae F; Watanabe H; Sasaki AT; Tanabe HC; Sadato N; Taga G
    Neuroimage; 2012 Oct; 63(1):179-93. PubMed ID: 22713670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic resting-state brain networks in health and disease.
    Spetsieris PG; Ko JH; Tang CC; Nazem A; Sako W; Peng S; Ma Y; Dhawan V; Eidelberg D
    Proc Natl Acad Sci U S A; 2015 Feb; 112(8):2563-8. PubMed ID: 25675473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-level bootstrap analysis of stable clusters in resting-state fMRI.
    Bellec P; Rosa-Neto P; Lyttelton OC; Benali H; Evans AC
    Neuroimage; 2010 Jul; 51(3):1126-39. PubMed ID: 20226257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resisting Sleep Pressure: Impact on Resting State Functional Network Connectivity.
    Tüshaus L; Balsters JH; Schläpfer A; Brandeis D; O'Gorman Tuura R; Achermann P
    Brain Topogr; 2017 Nov; 30(6):757-773. PubMed ID: 28712063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward a complete taxonomy of resting state networks across wakefulness and sleep: an assessment of spatially distinct resting state networks using independent component analysis.
    Houldin E; Fang Z; Ray LB; Owen AM; Fogel SM
    Sleep; 2019 Mar; 42(3):. PubMed ID: 30476346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstructing Large-Scale Brain Resting-State Networks from High-Resolution EEG: Spatial and Temporal Comparisons with fMRI.
    Yuan H; Ding L; Zhu M; Zotev V; Phillips R; Bodurka J
    Brain Connect; 2016 Mar; 6(2):122-35. PubMed ID: 26414793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic influences on resting-state functional networks: A twin study.
    Fu Y; Ma Z; Hamilton C; Liang Z; Hou X; Ma X; Hu X; He Q; Deng W; Wang Y; Zhao L; Meng H; Li T; Zhang N
    Hum Brain Mapp; 2015 Oct; 36(10):3959-72. PubMed ID: 26147340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulatory effects of acupuncture on resting-state networks: a functional MRI study combining independent component analysis and multivariate Granger causality analysis.
    Zhong C; Bai L; Dai R; Xue T; Wang H; Feng Y; Liu Z; You Y; Chen S; Tian J
    J Magn Reson Imaging; 2012 Mar; 35(3):572-81. PubMed ID: 22069078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain-wide functional diffuse optical tomography of resting state networks.
    Khan AF; Zhang F; Yuan H; Ding L
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33946052
    [No Abstract]   [Full Text] [Related]  

  • 16. Impact of analysis methods on the reproducibility and reliability of resting-state networks.
    Franco AR; Mannell MV; Calhoun VD; Mayer AR
    Brain Connect; 2013; 3(4):363-74. PubMed ID: 23705789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. fMRI resting state networks define distinct modes of long-distance interactions in the human brain.
    De Luca M; Beckmann CF; De Stefano N; Matthews PM; Smith SM
    Neuroimage; 2006 Feb; 29(4):1359-67. PubMed ID: 16260155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved correspondence of resting-state networks after macroanatomical alignment.
    Frost MA; Esposito F; Goebel R
    Hum Brain Mapp; 2014 Feb; 35(2):673-82. PubMed ID: 23161519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alterations of directional connectivity among resting-state networks in Alzheimer disease.
    Li R; Wu X; Chen K; Fleisher AS; Reiman EM; Yao L
    AJNR Am J Neuroradiol; 2013 Feb; 34(2):340-5. PubMed ID: 22790250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluctuations in Global Brain Activity Are Associated With Changes in Whole-Brain Connectivity of Functional Networks.
    Scheinost D; Tokoglu F; Shen X; Finn ES; Noble S; Papademetris X; Constable RT
    IEEE Trans Biomed Eng; 2016 Dec; 63(12):2540-2549. PubMed ID: 27541328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.