These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 26177419)

  • 1. Multiple kernel learning with random effects for predicting longitudinal outcomes and data integration.
    Chen T; Zeng D; Wang Y
    Biometrics; 2015 Dec; 71(4):918-28. PubMed ID: 26177419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structured sparsity regularized multiple kernel learning for Alzheimer's disease diagnosis.
    Peng J; Zhu X; Wang Y; An L; Shen D
    Pattern Recognit; 2019 Apr; 88():370-382. PubMed ID: 30872866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A survey on machine and statistical learning for longitudinal analysis of neuroimaging data in Alzheimer's disease.
    Martí-Juan G; Sanroma-Guell G; Piella G
    Comput Methods Programs Biomed; 2020 Jun; 189():105348. PubMed ID: 31995745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple kernel learning in the primal for multimodal Alzheimer's disease classification.
    Liu F; Zhou L; Shen C; Yin J
    IEEE J Biomed Health Inform; 2014 May; 18(3):984-90. PubMed ID: 24132030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Part 1. Statistical Learning Methods for the Effects of Multiple Air Pollution Constituents.
    Coull BA; Bobb JF; Wellenius GA; Kioumourtzoglou MA; Mittleman MA; Koutrakis P; Godleski JJ
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):5-50. PubMed ID: 26333238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of Medication Data to Enhance the Prediction of Alzheimer's Progression Using Machine Learning.
    El-Sappagh S; Abuhmed T; Alouffi B; Sahal R; Abdelhade N; Saleh H
    Comput Intell Neurosci; 2021; 2021():8439655. PubMed ID: 34603436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining heterogeneous data sources for neuroimaging based diagnosis: re-weighting and selecting what is important.
    Donini M; Monteiro JM; Pontil M; Hahn T; Fallgatter AJ; Shawe-Taylor J; Mourão-Miranda J;
    Neuroimage; 2019 Jul; 195():215-231. PubMed ID: 30894334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative evaluation of disease progression in a longitudinal mild cognitive impairment cohort.
    Runtti H; Mattila J; van Gils M; Koikkalainen J; Soininen H; Lötjönen J;
    J Alzheimers Dis; 2014; 39(1):49-61. PubMed ID: 24121959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling disease progression via multi-task learning.
    Zhou J; Liu J; Narayan VA; Ye J;
    Neuroimage; 2013 Sep; 78():233-48. PubMed ID: 23583359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Longitudinal clinical score prediction in Alzheimer's disease with soft-split sparse regression based random forest.
    Huang L; Jin Y; Gao Y; Thung KH; Shen D;
    Neurobiol Aging; 2016 Oct; 46():180-91. PubMed ID: 27500865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of imaging modalities, brain atlases and feature selection on prediction of Alzheimer's disease.
    Ota K; Oishi N; Ito K; Fukuyama H; ;
    J Neurosci Methods; 2015 Dec; 256():168-83. PubMed ID: 26318777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear model with random inflection points for modeling neurodegenerative disease progression.
    Sun M; Wang Y
    Stat Med; 2018 Dec; 37(30):4721-4742. PubMed ID: 30256435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-modality sparse representation-based classification for Alzheimer's disease and mild cognitive impairment.
    Xu L; Wu X; Chen K; Yao L
    Comput Methods Programs Biomed; 2015 Nov; 122(2):182-90. PubMed ID: 26298855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equivalence of kernel machine regression and kernel distance covariance for multidimensional phenotype association studies.
    Hua WY; Ghosh D
    Biometrics; 2015 Sep; 71(3):812-20. PubMed ID: 25939365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting activity approach based on new atoms similarity kernel function.
    Abu El-Atta AH; Moussa MI; Hassanien AE
    J Mol Graph Model; 2015 Jul; 60():55-62. PubMed ID: 26117822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probability-confidence-kernel-based localized multiple kernel learning with lp norm.
    Han Y; Liu G
    IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):827-37. PubMed ID: 22262684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using local correlation in kernel-based smoothers for dependent data.
    Peterson DR; Zhao H; Eapen S
    Biometrics; 2003 Dec; 59(4):984-91. PubMed ID: 14969477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting colorectal surgical complications using heterogeneous clinical data and kernel methods.
    Soguero-Ruiz C; Hindberg K; Mora-Jiménez I; Rojo-Álvarez JL; Skrøvseth SO; Godtliebsen F; Mortensen K; Revhaug A; Lindsetmo RO; Augestad KM; Jenssen R
    J Biomed Inform; 2016 Jun; 61():87-96. PubMed ID: 26980235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defining multivariate normative rules for healthy aging using neuroimaging and machine learning: an application to Alzheimer's disease.
    Andrade de Oliveira A; Carthery-Goulart MT; Oliveira Júnior PP; Carrettiero DC; Sato JR
    J Alzheimers Dis; 2015; 43(1):201-12. PubMed ID: 25079801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The method for breast cancer grade prediction and pathway analysis based on improved multiple kernel learning.
    Song T; Wang Y; Du W; Cao S; Tian Y; Liang Y
    J Bioinform Comput Biol; 2017 Feb; 15(1):1650037. PubMed ID: 27899048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.