These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 26177455)

  • 21. Inhibition of CRISPR/Cas9-Mediated Genome Engineering by a Type I Interferon-Induced Reduction in Guide RNA Expression.
    Machitani M; Sakurai F; Wakabayashi K; Nakatani K; Takayama K; Tachibana M; Mizuguchi H
    Biol Pharm Bull; 2017; 40(3):272-277. PubMed ID: 28250269
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering the Delivery System for CRISPR-Based Genome Editing.
    Glass Z; Lee M; Li Y; Xu Q
    Trends Biotechnol; 2018 Feb; 36(2):173-185. PubMed ID: 29305085
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR-Cas9-Mediated Genome Editing in Leishmania donovani.
    Zhang WW; Matlashewski G
    mBio; 2015 Jul; 6(4):e00861. PubMed ID: 26199327
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient gene targeting in golden Syrian hamsters by the CRISPR/Cas9 system.
    Fan Z; Li W; Lee SR; Meng Q; Shi B; Bunch TD; White KL; Kong IK; Wang Z
    PLoS One; 2014; 9(10):e109755. PubMed ID: 25299451
    [TBL] [Abstract][Full Text] [Related]  

  • 25. gRNA-transient expression system for simplified gRNA delivery in CRISPR/Cas9 genome editing.
    Easmin F; Hassan N; Sasano Y; Ekino K; Taguchi H; Harashima S
    J Biosci Bioeng; 2019 Sep; 128(3):373-378. PubMed ID: 31010727
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Creating Genome Modifications in C. elegans Using the CRISPR/Cas9 System.
    Calarco JA; Friedland AE
    Methods Mol Biol; 2015; 1327():59-74. PubMed ID: 26423968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Co-expression of Cas9 and single-guided RNAs in
    Qiao J; Li W; Lin S; Sun W; Ma L; Liu Y
    Commun Biol; 2019; 2():161. PubMed ID: 31069270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cas9-based genome editing in Xenopus tropicalis.
    Nakayama T; Blitz IL; Fish MB; Odeleye AO; Manohar S; Cho KW; Grainger RM
    Methods Enzymol; 2014; 546():355-75. PubMed ID: 25398349
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expanding the CRISPR/Cas9 Toolbox for Gene Engineering in S. cerevisiae.
    Levi O; Arava Y
    Curr Microbiol; 2020 Mar; 77(3):468-478. PubMed ID: 31901956
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SapTrap, a Toolkit for High-Throughput CRISPR/Cas9 Gene Modification in Caenorhabditis elegans.
    Schwartz ML; Jorgensen EM
    Genetics; 2016 Apr; 202(4):1277-88. PubMed ID: 26837755
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single plasmid systems for inducible dual protein expression and for CRISPR-Cas9/CRISPRi gene regulation in lactic acid bacterium Lactococcus lactis.
    Berlec A; Škrlec K; Kocjan J; Olenic M; Štrukelj B
    Sci Rep; 2018 Jan; 8(1):1009. PubMed ID: 29343791
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer.
    Zhou X; Xin J; Fan N; Zou Q; Huang J; Ouyang Z; Zhao Y; Zhao B; Liu Z; Lai S; Yi X; Guo L; Esteban MA; Zeng Y; Yang H; Lai L
    Cell Mol Life Sci; 2015 Mar; 72(6):1175-84. PubMed ID: 25274063
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering a CRISPR Interference System To Repress a Class 1 Integron in Escherichia coli.
    Li Q; Zhao P; Li L; Zhao H; Shi L; Tian P
    Antimicrob Agents Chemother; 2020 Feb; 64(3):. PubMed ID: 31871091
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional Characterization of Novel U6 RNA Polymerase III Promoters: Their Implication for CRISPR-Cas9-Mediated Gene Editing in Aspergillus oryzae.
    Chutrakul C; Panchanawaporn S; Jeennor S; Anantayanon J; Vorapreeda T; Vichai V; Laoteng K
    Curr Microbiol; 2019 Dec; 76(12):1443-1451. PubMed ID: 31541261
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A CRISPR/Cas9 Cleavage System for Capturing Fungal Secondary Metabolite Gene Clusters.
    Xu X; Feng J; Zhang P; Fan J; Yin WB
    J Microbiol Biotechnol; 2021 Jan; 31(1):8-15. PubMed ID: 33144546
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A simple dual-inducible CRISPR interference system for multiple gene targeting in Corynebacterium glutamicum.
    Gauttam R; Seibold GM; Mueller P; Weil T; Weiß T; Handrick R; Eikmanns BJ
    Plasmid; 2019 May; 103():25-35. PubMed ID: 30954454
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR/Cas9-based genome engineering: A new breakthrough in the genetic manipulation of filamentous fungi.
    Ullah M; Xia L; Xie S; Sun S
    Biotechnol Appl Biochem; 2020 Nov; 67(6):835-851. PubMed ID: 33179815
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Non-homologous end-joining-deficient filamentous fungal strains mitigate the impact of off-target mutations during the application of CRISPR/Cas9.
    Garrigues S; Peng M; Kun RS; de Vries RP
    mBio; 2023 Aug; 14(4):e0066823. PubMed ID: 37486124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient genome editing using tRNA promoter-driven CRISPR/Cas9 gRNA in Aspergillus niger.
    Song L; Ouedraogo JP; Kolbusz M; Nguyen TTM; Tsang A
    PLoS One; 2018; 13(8):e0202868. PubMed ID: 30142205
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cas9-based genome editing in Drosophila.
    Housden BE; Lin S; Perrimon N
    Methods Enzymol; 2014; 546():415-39. PubMed ID: 25398351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.