These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 26177509)
21. The clinical significance of negative flow cytometry immunophenotypic results in a morphologically scored positive bone marrow in patients following treatment for acute myeloid leukemia. Ouyang J; Goswami M; Tang G; Peng J; Ravandi F; Daver N; Routbort M; Konoplev S; Lin P; Medeiros LJ; Jorgensen JL; Wang SA Am J Hematol; 2015 Jun; 90(6):504-10. PubMed ID: 25732229 [TBL] [Abstract][Full Text] [Related]
22. MicroSPECT/CT imaging of primary human AML engrafted into the bone marrow and spleen of NOD/SCID mice using 111In-DTPA-NLS-CSL360 radioimmunoconjugates recognizing the CD123+ / CD131- epitope expressed by leukemia stem cells. Leyton JV; Williams B; Gao C; Keating A; Minden M; Reilly RM Leuk Res; 2014 Nov; 38(11):1367-73. PubMed ID: 25278187 [TBL] [Abstract][Full Text] [Related]
23. In-silico comparison of two induction regimens (7 + 3 vs 7 + 3 plus additional bone marrow evaluation) in acute myeloid leukemia treatment. Banck JC; Görlich D BMC Syst Biol; 2019 Jan; 13(1):18. PubMed ID: 30704476 [TBL] [Abstract][Full Text] [Related]
24. Clinical Relevance of RUNX1 and CBFB Alterations in Acute Myeloid Leukemia and Other Hematological Disorders. Metzeler KH; Bloomfield CD Adv Exp Med Biol; 2017; 962():175-199. PubMed ID: 28299658 [TBL] [Abstract][Full Text] [Related]
26. An improved pre-clinical patient-derived liquid xenograft mouse model for acute myeloid leukemia. Her Z; Yong KSM; Paramasivam K; Tan WWS; Chan XY; Tan SY; Liu M; Fan Y; Linn YC; Hui KM; Surana U; Chen Q J Hematol Oncol; 2017 Oct; 10(1):162. PubMed ID: 28985760 [TBL] [Abstract][Full Text] [Related]
27. Is a nadir bone marrow required and, if so, what to do with residual disease? Luger SM Best Pract Res Clin Haematol; 2011 Dec; 24(4):527-32. PubMed ID: 22127316 [TBL] [Abstract][Full Text] [Related]
28. miR-17 deregulates a core RUNX1-miRNA mechanism of CBF acute myeloid leukemia. Fischer J; Rossetti S; Datta A; Eng K; Beghini A; Sacchi N Mol Cancer; 2015 Jan; 14():7. PubMed ID: 25612891 [TBL] [Abstract][Full Text] [Related]
29. Elevated HIF-1α expression of acute myelogenous leukemia stem cells in the endosteal hypoxic zone may be a cause of minimal residual disease in bone marrow after chemotherapy. Matsunaga T; Imataki O; Torii E; Kameda T; Shide K; Shimoda H; Kamiunten A; Sekine M; Taniguchi Y; Yamamoto S; Hidaka T; Katayose K; Kubuki Y; Dobashi H; Bandoh S; Ohnishi H; Fukai F; Shimoda K Leuk Res; 2012 Jun; 36(6):e122-4. PubMed ID: 22444690 [No Abstract] [Full Text] [Related]
30. A diphtheria toxin-interleukin 3 fusion protein is cytotoxic to primitive acute myeloid leukemia progenitors but spares normal progenitors. Feuring-Buske M; Frankel AE; Alexander RL; Gerhard B; Hogge DE Cancer Res; 2002 Mar; 62(6):1730-6. PubMed ID: 11912147 [TBL] [Abstract][Full Text] [Related]
31. Molecular pathways mediating MDS/AML with focus on AML1/RUNX1 point mutations. Harada Y; Harada H J Cell Physiol; 2009 Jul; 220(1):16-20. PubMed ID: 19334039 [TBL] [Abstract][Full Text] [Related]
32. RUNX1 mutations are frequent in chronic myelomonocytic leukemia and mutations at the C-terminal region might predict acute myeloid leukemia transformation. Kuo MC; Liang DC; Huang CF; Shih YS; Wu JH; Lin TL; Shih LY Leukemia; 2009 Aug; 23(8):1426-31. PubMed ID: 19282830 [TBL] [Abstract][Full Text] [Related]
33. Number of RUNX1 mutations, wild-type allele loss and additional mutations impact on prognosis in adult RUNX1-mutated AML. Stengel A; Kern W; Meggendorfer M; Nadarajah N; Perglerovà K; Haferlach T; Haferlach C Leukemia; 2018 Feb; 32(2):295-302. PubMed ID: 28751771 [TBL] [Abstract][Full Text] [Related]
34. AML1/RUNX1 gene point mutations in childhood myeloid malignancies. Migas A; Savva N; Mishkova O; Aleinikova OV Pediatr Blood Cancer; 2011 Oct; 57(4):583-7. PubMed ID: 21294243 [TBL] [Abstract][Full Text] [Related]
35. Core binding factor acute myeloid leukaemia and c-KIT mutations. Riera L; Marmont F; Toppino D; Frairia C; Sismondi F; Audisio E; Di Bello C; D'Ardia S; Di Celle PF; Messa E; Inghirami G; Vitolo U; Pich A Oncol Rep; 2013 May; 29(5):1867-72. PubMed ID: 23467883 [TBL] [Abstract][Full Text] [Related]
36. Lack of noncanonical RAS mutations in cytogenetically normal acute myeloid leukemia. Reuter CW; Krauter J; Onono FO; Bunke T; Damm F; Thol F; Wagner K; Göhring G; Schlegelberger B; Heuser M; Ganser A; Morgan MA Ann Hematol; 2014 Jun; 93(6):977-82. PubMed ID: 24737308 [TBL] [Abstract][Full Text] [Related]
38. Low WT1 transcript levels at diagnosis predicted poor outcomes of acute myeloid leukemia patients with t(8;21) who received chemotherapy or allogeneic hematopoietic stem cell transplantation. Qin YZ; Wang Y; Zhu HH; Gale RP; Zhang MJ; Jiang Q; Jiang H; Xu LP; Chen H; Zhang XH; Liu YR; Lai YY; Jiang B; Liu KY; Huang XJ Chin J Cancer; 2016 May; 35():46. PubMed ID: 27197573 [TBL] [Abstract][Full Text] [Related]
39. Comparative utility of NRG and NRGS mice for the study of normal hematopoiesis, leukemogenesis, and therapeutic response. Barve A; Casson L; Krem M; Wunderlich M; Mulloy JC; Beverly LJ Exp Hematol; 2018 Nov; 67():18-31. PubMed ID: 30125602 [TBL] [Abstract][Full Text] [Related]
40. RUNX1 and CBFβ Mutations and Activities of Their Wild-Type Alleles in AML. Hyde RK; Liu P; Friedman AD Adv Exp Med Biol; 2017; 962():265-282. PubMed ID: 28299663 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]