BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 26177594)

  • 1. An Azine-Linked Covalent Organic Framework: Synthesis, Characterization and Efficient Gas Storage.
    Li Z; Zhi Y; Feng X; Ding X; Zou Y; Liu X; Mu Y
    Chemistry; 2015 Aug; 21(34):12079-84. PubMed ID: 26177594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 2D azine-linked covalent organic framework for gas storage applications.
    Li Z; Feng X; Zou Y; Zhang Y; Xia H; Liu X; Mu Y
    Chem Commun (Camb); 2014 Nov; 50(89):13825-8. PubMed ID: 25253410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications.
    Furukawa H; Yaghi OM
    J Am Chem Soc; 2009 Jul; 131(25):8875-83. PubMed ID: 19496589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity.
    Wei H; Chai S; Hu N; Yang Z; Wei L; Wang L
    Chem Commun (Camb); 2015 Aug; 51(61):12178-81. PubMed ID: 26152822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of High-Surface-Area Nitrogen-Doped Porous Carbon Microflowers and Their Efficient Carbon Dioxide Capture Performance.
    Li Y; Cao M
    Chem Asian J; 2015 Jul; 10(7):1496-504. PubMed ID: 25899780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Microporous Nitrogen-doped Carbon Synthesized from Azine-linked Covalent Organic Framework and its Supercapacitor Function.
    Kim G; Yang J; Nakashima N; Shiraki T
    Chemistry; 2017 Dec; 23(69):17504-17510. PubMed ID: 28836305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expanded porous MOF-505 analogue exhibiting large hydrogen storage capacity and selective carbon dioxide adsorption.
    Zheng B; Yun R; Bai J; Lu Z; Du L; Li Y
    Inorg Chem; 2013 Mar; 52(6):2823-9. PubMed ID: 23458072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal@COFs: covalent organic frameworks as templates for Pd nanoparticles and hydrogen storage properties of Pd@COF-102 hybrid material.
    Kalidindi SB; Oh H; Hirscher M; Esken D; Wiktor C; Turner S; Van Tendeloo G; Fischer RA
    Chemistry; 2012 Aug; 18(35):10848-56. PubMed ID: 22886887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High uptakes of methane in Li-doped 3D covalent organic frameworks.
    Lan J; Cao D; Wang W
    Langmuir; 2010 Jan; 26(1):220-6. PubMed ID: 20038169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption mechanism and uptake of methane in covalent organic frameworks: theory and experiment.
    Mendoza-Cortés JL; Han SS; Furukawa H; Yaghi OM; Goddard WA
    J Phys Chem A; 2010 Oct; 114(40):10824-33. PubMed ID: 20845983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of Ester- and Amide-Linker-Based Porous Organic Polymers for Carbon Dioxide Capture and Separation at Wide Temperatures and Pressures.
    Ullah R; Atilhan M; Anaya B; Al-Muhtaseb S; Aparicio S; Patel H; Thirion D; Yavuz CT
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20772-85. PubMed ID: 27458732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An azine-linked covalent organic framework.
    Dalapati S; Jin S; Gao J; Xu Y; Nagai A; Jiang D
    J Am Chem Soc; 2013 Nov; 135(46):17310-3. PubMed ID: 24182194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directing the structural features of N(2)-phobic nanoporous covalent organic polymers for CO(2) capture and separation.
    Patel HA; Je SH; Park J; Jung Y; Coskun A; Yavuz CT
    Chemistry; 2014 Jan; 20(3):772-80. PubMed ID: 24338860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Versatile Cu
    De D; Pal TK; Neogi S; Senthilkumar S; Das D; Gupta SS; Bharadwaj PK
    Chemistry; 2016 Mar; 22(10):3387-3396. PubMed ID: 26833880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An azine-linked hexaphenylbenzene based covalent organic framework.
    Alahakoon SB; Thompson CM; Nguyen AX; Occhialini G; McCandless GT; Smaldone RA
    Chem Commun (Camb); 2016 Feb; 52(13):2843-5. PubMed ID: 26776901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-crystal structure of a covalent organic framework.
    Zhang YB; Su J; Furukawa H; Yun Y; Gándara F; Duong A; Zou X; Yaghi OM
    J Am Chem Soc; 2013 Nov; 135(44):16336-9. PubMed ID: 24143961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A highly porous 4,4-paddlewheel-connected NbO-type metal-organic framework with a large gas-uptake capacity.
    Wang Z; Zheng B; Liu H; Yi P; Li X; Yu X; Yun R
    Dalton Trans; 2013 Aug; 42(31):11304-11. PubMed ID: 23817963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis.
    Fang Q; Gu S; Zheng J; Zhuang Z; Qiu S; Yan Y
    Angew Chem Int Ed Engl; 2014 Mar; 53(11):2878-82. PubMed ID: 24604810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermally/hydrolytically stable covalent organic frameworks from a rigid macrocyclic host.
    Song JR; Sun J; Liu J; Huang ZT; Zheng QY
    Chem Commun (Camb); 2014 Jan; 50(7):788-91. PubMed ID: 24292168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water-stable zirconium-based metal-organic framework material with high-surface area and gas-storage capacities.
    Gutov OV; Bury W; Gomez-Gualdron DA; Krungleviciute V; Fairen-Jimenez D; Mondloch JE; Sarjeant AA; Al-Juaid SS; Snurr RQ; Hupp JT; Yildirim T; Farha OK
    Chemistry; 2014 Sep; 20(39):12389-93. PubMed ID: 25123293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.