These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 26177849)
1. Proper selection of 1 g controls in simulated microgravity research as illustrated with clinorotated plant cell suspension cultures. Kamal KY; Hemmersbach R; Medina FJ; Herranz R Life Sci Space Res (Amst); 2015 Apr; 5():47-52. PubMed ID: 26177849 [TBL] [Abstract][Full Text] [Related]
2. The combined effects of real or simulated microgravity and red-light photoactivation on plant root meristematic cells. Valbuena MA; Manzano A; Vandenbrink JP; Pereda-Loth V; Carnero-Diaz E; Edelmann RE; Kiss JZ; Herranz R; Medina FJ Planta; 2018 Sep; 248(3):691-704. PubMed ID: 29948124 [TBL] [Abstract][Full Text] [Related]
3. Functional alterations of root meristematic cells of Arabidopsis thaliana induced by a simulated microgravity environment. Boucheron-Dubuisson E; Manzano AI; Le Disquet I; Matía I; Sáez-Vasquez J; van Loon JJ; Herranz R; Carnero-Diaz E; Medina FJ J Plant Physiol; 2016 Dec; 207():30-41. PubMed ID: 27792899 [TBL] [Abstract][Full Text] [Related]
4. Automorphosis of etiolated pea seedlings in space is simulated by a three-dimensional clinostat and the application of inhibitors of auxin polar transport. Miyamoto K; Hoshino T; Yamashita M; Ueda J Physiol Plant; 2005 Apr; 123(4):467-74. PubMed ID: 15844285 [TBL] [Abstract][Full Text] [Related]
5. Early root cap development and graviresponse in white clover (Trifolium repens) grown in space and on a two-axis clinostat. Smith JD; Staehelin LA; Todd P J Plant Physiol; 1999 Oct; 155(4-5):543-50. PubMed ID: 11543182 [TBL] [Abstract][Full Text] [Related]
6. Formation and growth of callus tissue of Arabidopsis under changed gravity. Merkys AJ; Laurinavicius RS; Kenstaviciene PF; Necitailo GS Adv Space Res; 1989; 9(11):37-40. PubMed ID: 11537345 [TBL] [Abstract][Full Text] [Related]
7. [Ultrastructure of statocytes and cells of distal elongation zone of Arabidopsis thaliana under clinorotation]. Romanchuk SM Tsitol Genet; 2010; 44(6):3-8. PubMed ID: 21254615 [TBL] [Abstract][Full Text] [Related]
8. Use of microgravity simulators for plant biological studies. Herranz R; Valbuena MA; Manzano A; Kamal KY; Medina FJ Methods Mol Biol; 2015; 1309():239-54. PubMed ID: 25981780 [TBL] [Abstract][Full Text] [Related]
9. Microgravity and clinorotation cause redistribution of free calcium in sweet clover columella cells. Hilaire E; Paulsen AQ; Brown CS; Guikema JA Plant Cell Physiol; 1995 Jul; 36(5):831-7. PubMed ID: 11536706 [TBL] [Abstract][Full Text] [Related]
10. Gravity-dependent differentiation and root coils in Arabidopsis thaliana wild type and phospholipase-A-I knockdown mutant grown on the International Space Station. Scherer GF; Pietrzyk P Plant Biol (Stuttg); 2014 Jan; 16 Suppl 1():97-106. PubMed ID: 24373011 [TBL] [Abstract][Full Text] [Related]
11. Ultrastructural analysis of organization of roots obtained from cell cultures at clinostating and under microgravity. Podlutsky AG Adv Space Res; 1992; 12(1):93-8. PubMed ID: 11536994 [TBL] [Abstract][Full Text] [Related]
12. Light signals counteract alterations caused by simulated microgravity in proliferating plant cells. Manzano A; Pereda-Loth V; de Bures A; Sáez-Vásquez J; Herranz R; Medina FJ Am J Bot; 2021 Sep; 108(9):1775-1792. PubMed ID: 34524692 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms of disruption of meristematic competence by microgravity in Arabidopsis seedlings. Herranz R; Valbuena MA; Youssef K; Medina FJ Plant Signal Behav; 2014; 9(4):e28289. PubMed ID: 24614101 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of amyloplast movement in cress root statocytes under different gravitational loads. Gaina V; Svegzdiene D; Rakleviciene D; Koryzniene D; Staneviciene R; Laurinavicius R Adv Space Res; 2003; 31(10):2275-81. PubMed ID: 14686443 [TBL] [Abstract][Full Text] [Related]
15. Use of Reduced Gravity Simulators for Plant Biological Studies. Herranz R; Valbuena MA; Manzano A; Kamal KY; Villacampa A; Ciska M; van Loon JJWA; Medina FJ Methods Mol Biol; 2022; 2368():241-265. PubMed ID: 34647260 [TBL] [Abstract][Full Text] [Related]
16. Plant cell proliferation and growth are altered by microgravity conditions in spaceflight. Matía I; González-Camacho F; Herranz R; Kiss JZ; Gasset G; van Loon JJ; Marco R; Javier Medina F J Plant Physiol; 2010 Feb; 167(3):184-93. PubMed ID: 19864040 [TBL] [Abstract][Full Text] [Related]
17. Microgravity modelling by two-axial clinorotation leads to scattered organisation of cytoskeleton in Arabidopsis seedlings. Pozhvanov G; Sharova E; Medvedev S Funct Plant Biol; 2021 Sep; 48(10):1062-1073. PubMed ID: 34372965 [TBL] [Abstract][Full Text] [Related]
18. Plastid position in Arabidopsis columella cells is similar in microgravity and on a random-positioning machine. Kraft TF; van Loon JJ; Kiss JZ Planta; 2000 Aug; 211(3):415-22. PubMed ID: 10987561 [TBL] [Abstract][Full Text] [Related]
19. The actin cytoskeleton is a suppressor of the endogenous skewing behaviour of Arabidopsis primary roots in microgravity. Nakashima J; Liao F; Sparks JA; Tang Y; Blancaflor EB Plant Biol (Stuttg); 2014 Jan; 16 Suppl 1():142-50. PubMed ID: 23952736 [TBL] [Abstract][Full Text] [Related]
20. Effect of modeled microgravity on radiation-induced adaptive response of root growth in Arabidopsis thaliana. Deng C; Wang T; Wu J; Xu W; Li H; Liu M; Wu L; Lu J; Bian P Mutat Res; 2017 Feb; 796():20-28. PubMed ID: 28254518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]