These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 26177912)

  • 1. Analysis of cuticular wax constituents and genes that contribute to the formation of 'glossy Newhall', a spontaneous bud mutant from the wild-type 'Newhall' navel orange.
    Liu D; Yang L; Zheng Q; Wang Y; Wang M; Zhuang X; Wu Q; Liu C; Liu S; Liu Y
    Plant Mol Biol; 2015 Aug; 88(6):573-90. PubMed ID: 26177912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of the ultrastructure and composition of fruits' cuticular wax from the wild-type 'Newhall' navel orange (Citrus sinensis [L.] Osbeck cv. Newhall) and its glossy mutant.
    Liu DC; Zeng Q; Ji QX; Liu CF; Liu SB; Liu Y
    Plant Cell Rep; 2012 Dec; 31(12):2239-46. PubMed ID: 22892682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of surface wax in mature fruits between Satsuma mandarin (Citrus unshiu) and 'Newhall' navel orange (Citrus sinensis) from the perspective of crystal morphology, chemical composition and key gene expression.
    Wang J; Hao H; Liu R; Ma Q; Xu J; Chen F; Cheng Y; Deng X
    Food Chem; 2014 Jun; 153():177-85. PubMed ID: 24491718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of the cuticular waxes and related gene expression between 'Newhall' and 'Ganqi 3' navel orange during long-term cold storage.
    Liu D; Ma Q; Yang L; Hu W; Guo W; Wang M; Zhou R; Liu Y
    Plant Physiol Biochem; 2021 Oct; 167():1049-1060. PubMed ID: 34600182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome and Physiological Analyses of a Navel Orange Mutant with Improved Drought Tolerance and Water Use Efficiency Caused by Increases of Cuticular Wax Accumulation and ROS Scavenging Capacity.
    Liang B; Wan S; Ma Q; Yang L; Hu W; Kuang L; Xie J; Liu D; Liu Y
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of cuticle formation during fruit development and ripening in 'Newhall' navel orange (Citrus sinensis Osbeck) revealed by transcriptomic and metabolomic profiling.
    Wang J; Sun L; Xie L; He Y; Luo T; Sheng L; Luo Y; Zeng Y; Xu J; Deng X; Cheng Y
    Plant Sci; 2016 Feb; 243():131-44. PubMed ID: 26795158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome and weighted gene co-expression network analyses reveal key genes and pathways involved in early fruit ripening in Citrus sinensis.
    Chen J; Xie L; Lin Y; Zhong B; Wan S
    BMC Genomics; 2024 Jul; 25(1):735. PubMed ID: 39080567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Transcriptome and sRNAome Analyses Reveal the Regulatory Mechanisms of Fruit Ripening in a Spontaneous Early-Ripening Navel Orange Mutant and Its Wild Type.
    Mi L; Ma D; Lv S; Xu S; Zhong B; Peng T; Liu D; Liu Y
    Genes (Basel); 2022 Sep; 13(10):. PubMed ID: 36292591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipidomic and transcriptomic analysis reveals reallocation of carbon flux from cuticular wax into plastid membrane lipids in a glossy "Newhall" navel orange mutant.
    Wan H; Liu H; Zhang J; Lyu Y; Li Z; He Y; Zhang X; Deng X; Brotman Y; Fernie AR; Cheng Y; Wen W
    Hortic Res; 2020; 7():41. PubMed ID: 32257227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tomato fruit cuticular waxes and their effects on transpiration barrier properties: functional characterization of a mutant deficient in a very-long-chain fatty acid beta-ketoacyl-CoA synthase.
    Vogg G; Fischer S; Leide J; Emmanuel E; Jetter R; Levy AA; Riederer M
    J Exp Bot; 2004 Jun; 55(401):1401-10. PubMed ID: 15133057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Combination of Abscisic Acid (ABA) and Water Stress Regulates the Epicuticular Wax Metabolism and Cuticle Properties of Detached Citrus Fruit.
    Romero P; Lafuente MT
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of carotenoid biosynthesis during fruit maturation in the red-fleshed orange mutant Cara Cara.
    Alquezar B; Rodrigo MJ; Zacarías L
    Phytochemistry; 2008 Jul; 69(10):1997-2007. PubMed ID: 18538806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization of the Transpiration Barrier in the Epi- and Intracuticular Waxes of Eight Plant Species: Water Transport Resistances Are Associated with Fatty Acyl Rather Than Alicyclic Components.
    Jetter R; Riederer M
    Plant Physiol; 2016 Feb; 170(2):921-34. PubMed ID: 26644508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical composition, antioxidant, antibacterial, and tyrosinase inhibition activity of extracts from Newhall navel orange (Citrus sinensis Osbeck cv. Newhall) peel.
    Guo C; Shan Y; Yang Z; Zhang L; Ling W; Liang Y; Ouyang Z; Zhong B; Zhang J
    J Sci Food Agric; 2020 Apr; 100(6):2664-2674. PubMed ID: 31997352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of composition, morphology, and biosynthesis of cuticular wax in wild type bilberry (Vaccinium myrtillus L.) and its glossy mutant.
    Trivedi P; Nguyen N; Klavins L; Kviesis J; Heinonen E; Remes J; Jokipii-Lukkari S; Klavins M; Karppinen K; Jaakola L; Häggman H
    Food Chem; 2021 Aug; 354():129517. PubMed ID: 33756336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maize glossy6 is involved in cuticular wax deposition and drought tolerance.
    Li L; Du Y; He C; Dietrich CR; Li J; Ma X; Wang R; Liu Q; Liu S; Wang G; Schnable PS; Zheng J
    J Exp Bot; 2019 Jun; 70(12):3089-3099. PubMed ID: 30919902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epicuticular wax on leaf cuticles does not establish the transpiration barrier, which is essentially formed by intracuticular wax.
    Zeisler-Diehl V; Müller Y; Schreiber L
    J Plant Physiol; 2018 Aug; 227():66-74. PubMed ID: 29653782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromosome-level genome assembly of navel orange cv. Gannanzao (Citrus sinensis Osbeck cv. Gannanzao).
    Xiong Z; Yin H; Wang N; Han G; Gao Y
    G3 (Bethesda); 2024 Feb; 14(2):. PubMed ID: 38001056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CsMYB96 confers resistance to water loss in citrus fruit by simultaneous regulation of water transport and wax biosynthesis.
    Zhang M; Wang J; Liu R; Liu H; Yang H; Zhu Z; Xu R; Wang P; Deng X; Xue S; Zhu F; Cheng Y
    J Exp Bot; 2022 Jan; 73(3):953-966. PubMed ID: 34599807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome and UPLC-MS/MS reveal mechanisms of amino acid biosynthesis in sweet orange 'Newhall' after different rootstocks grafting.
    Xiong B; Li Q; Yao J; Zheng W; Ou Y; He Y; Liao L; Wang X; Deng H; Zhang M; Sun G; He S; He J; Zhang X; Wang Z
    Front Plant Sci; 2023; 14():1216826. PubMed ID: 37496860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.