These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 26178119)
1. Melting point trends and solid phase behaviors of model salts with ion size asymmetry and distributed cation charge. Lindenberg EK; Patey GN J Chem Phys; 2015 Jul; 143(2):024508. PubMed ID: 26178119 [TBL] [Abstract][Full Text] [Related]
2. How distributed charge reduces the melting points of model ionic salts. Lindenberg EK; Patey GN J Chem Phys; 2014 Mar; 140(10):104504. PubMed ID: 24628179 [TBL] [Abstract][Full Text] [Related]
3. Unusual Melting Trend in an Alkali Asymmetric Sulfonamide Salt Series: Single-Crystal Analysis and Modeling. Schkeryantz L; Nguyen P; McCulloch WD; Moore CE; Lau KC; Wu Y Inorg Chem; 2021 Oct; 60(19):14679-14686. PubMed ID: 34555283 [TBL] [Abstract][Full Text] [Related]
4. Simulations of the solid, liquid, and melting of 1-n-butyl-4-amino-1,2,4-triazolium bromide. Alavi S; Thompson DL J Phys Chem B; 2005 Sep; 109(38):18127-34. PubMed ID: 16853328 [TBL] [Abstract][Full Text] [Related]
5. Transformations of body-centered cubic crystals composed of hard or soft spheres to liquids or face-centered cubic crystals. Wang F; Han Y J Chem Phys; 2019 Jan; 150(1):014504. PubMed ID: 30621411 [TBL] [Abstract][Full Text] [Related]
6. Crystal Structures and Phase Sequences of Metallocenium Salts with Fluorinated Anions: Effects of Molecular Size and Symmetry on Phase Transitions to Ionic Plastic Crystals. Mochida T; Funasako Y; Ishida M; Saruta S; Kosone T; Kitazawa T Chemistry; 2016 Oct; 22(44):15725-15732. PubMed ID: 27651203 [TBL] [Abstract][Full Text] [Related]
7. Structural and dynamical properties of ionic liquids: Competing influences of molecular properties. Spohr HV; Patey GN J Chem Phys; 2010 Apr; 132(15):154504. PubMed ID: 20423186 [TBL] [Abstract][Full Text] [Related]
8. Modes of surface premelting in colloidal crystals composed of attractive particles. Li B; Wang F; Zhou D; Peng Y; Ni R; Han Y Nature; 2016 Mar; 531(7595):485-8. PubMed ID: 26976448 [TBL] [Abstract][Full Text] [Related]
9. Effect of substituents and anions on the phase behavior of Ru(ii) sandwich complexes: exploring the boundaries between ionic liquids and ionic plastic crystals. Tominaga T; Ueda T; Mochida T Phys Chem Chem Phys; 2017 Feb; 19(6):4352-4359. PubMed ID: 28119978 [TBL] [Abstract][Full Text] [Related]
10. Highly conductive plastic crystals based on fluorohydrogenate anions. Taniki R; Matsumoto K; Hagiwara R; Hachiya K; Morinaga T; Sato T J Phys Chem B; 2013 Jan; 117(3):955-60. PubMed ID: 23270596 [TBL] [Abstract][Full Text] [Related]
11. Why are ionic liquids liquid? A simple explanation based on lattice and solvation energies. Krossing I; Slattery JM; Daguenet C; Dyson PJ; Oleinikova A; Weingärtner H J Am Chem Soc; 2006 Oct; 128(41):13427-34. PubMed ID: 17031955 [TBL] [Abstract][Full Text] [Related]
12. Melting behavior and ionic conductivity in hydrophobic ionic liquids. Kunze M; Montanino M; Appetecchi GB; Jeong S; Schönhoff M; Winter M; Passerini S J Phys Chem A; 2010 Feb; 114(4):1776-82. PubMed ID: 20058901 [TBL] [Abstract][Full Text] [Related]
13. Anomalous Melting Point of Multicharge Ionic Liquids: Structural, Electrostatic, and Orbital Properties of [Ln(NO Yuan WL; Wang SL; Wang Y; Zhang L; He L; Tao GH Inorg Chem; 2020 Sep; 59(18):13700-13708. PubMed ID: 32902266 [TBL] [Abstract][Full Text] [Related]
14. The structural classification of the highly disordered crystal phases of [Nn][BF4], [Nn][PF6], [Pn][BF4], and [Pn][PF6] salts (Nn(+) = tetraalkylammonium and Pn(+) = tetraalkylphosphonium). Matsumoto K; Harinaga U; Tanaka R; Koyama A; Hagiwara R; Tsunashima K Phys Chem Chem Phys; 2014 Nov; 16(43):23616-26. PubMed ID: 25241963 [TBL] [Abstract][Full Text] [Related]
15. Molecular simulations of carbon dioxide and water: cation solvation. Criscenti LJ; Cygan RT Environ Sci Technol; 2013 Jan; 47(1):87-94. PubMed ID: 22779448 [TBL] [Abstract][Full Text] [Related]
16. A density functional theory based approach for predicting melting points of ionic liquids. Chen L; Bryantsev VS Phys Chem Chem Phys; 2017 Feb; 19(5):4114-4124. PubMed ID: 28111666 [TBL] [Abstract][Full Text] [Related]
17. In silico prediction of the melting points of ionic liquids from thermodynamic considerations: a case study on 67 salts with a melting point range of 337 degrees C. Preiss U; Bulut S; Krossing I J Phys Chem B; 2010 Sep; 114(34):11133-40. PubMed ID: 20690695 [TBL] [Abstract][Full Text] [Related]
18. X-ray crystal structures of [XeF][MF6] (M = As, Sb, Bi), [XeF][M2F11] (M = Sb, Bi) and estimated thermochemical data and predicted stabilities for noble-gas fluorocation salts using volume-based thermodynamics. Elliott HS; Lehmann JF; Mercier HP; Jenkins HD; Schrobilgen GJ Inorg Chem; 2010 Sep; 49(18):8504-23. PubMed ID: 20735068 [TBL] [Abstract][Full Text] [Related]
19. Probing molecular interaction in ionic liquids by low frequency spectroscopy: Coulomb energy, hydrogen bonding and dispersion forces. Fumino K; Reimann S; Ludwig R Phys Chem Chem Phys; 2014 Oct; 16(40):21903-29. PubMed ID: 24898478 [TBL] [Abstract][Full Text] [Related]
20. The influence of water on the structural and transport properties of model ionic liquids. Spohr HV; Patey GN J Chem Phys; 2010 Jun; 132(23):234510. PubMed ID: 20572724 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]