These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 26178270)

  • 41. Environmental contamination and airborne microbial counts: a role for hydroxyl radical disinfection units?
    Wong V; Staniforth K; Boswell TC
    J Hosp Infect; 2011 Jul; 78(3):194-9. PubMed ID: 21497944
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Estimating ventilation rates in rooms with varying occupancy levels: Relevance for reducing transmission risk of airborne pathogens.
    Deol AK; Scarponi D; Beckwith P; Yates TA; Karat AS; Yan AWC; Baisley KS; Grant AD; White RG; McCreesh N
    PLoS One; 2021; 16(6):e0253096. PubMed ID: 34166388
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Practical and affordable measures for the protection of health care workers from tuberculosis in low-income countries.
    Harries AD; Maher D; Nunn P
    Bull World Health Organ; 1997; 75(5):477-89. PubMed ID: 9447782
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Ophthalmic operating theatre--chance of limiting contamination and infection risk. Part I. Decontamination of the microbial air pollution].
    Kałuzny J; Muszyński Z; Kałuzny BJ
    Klin Oczna; 2008; 110(1-3):102-7. PubMed ID: 18669096
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Polymerase chain reaction used for the detection of airborne Mycobacterium tuberculosis in health care settings.
    Wan GH; Lu SC; Tsai YH
    Am J Infect Control; 2004 Feb; 32(1):17-22. PubMed ID: 14755230
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A leap of faith. What can we do to curtail intrainstitutional transmission of tuberculosis?
    Iseman MD
    Ann Intern Med; 1992 Aug; 117(3):251-3. PubMed ID: 1616220
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Roles of sunlight and natural ventilation for controlling infection: historical and current perspectives.
    Hobday RA; Dancer SJ
    J Hosp Infect; 2013 Aug; 84(4):271-82. PubMed ID: 23790506
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ventilation Rates and Airflow Pathways in Patient Rooms: A Case Study of Bioaerosol Containment and Removal.
    Mousavi ES; Grosskopf KR
    Ann Occup Hyg; 2015 Nov; 59(9):1190-9. PubMed ID: 26187326
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Indoor spread of respiratory infection by recirculation of air.
    Riley RL
    Bull Eur Physiopathol Respir; 1979; 15(5):699-705. PubMed ID: 508976
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Airborne infection.
    Riley RL
    Am J Med; 1974 Sep; 57(3):466-75. PubMed ID: 4212915
    [No Abstract]   [Full Text] [Related]  

  • 51. Is natural ventilation a useful tool to prevent the airborne spread of TB?
    Wilson P
    PLoS Med; 2007 Feb; 4(2):e77. PubMed ID: 17326713
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Prevention of nosocomial infection of tuberculosis].
    Nakajima Y; Mori T
    Nihon Rinsho; 2003 Feb; 61 Suppl 2():682-7. PubMed ID: 12722301
    [No Abstract]   [Full Text] [Related]  

  • 53. Impact of environmental factors on efficacy of upper-room air ultraviolet germicidal irradiation for inactivating airborne mycobacteria.
    Xu P; Kujundzic E; Peccia J; Schafer MP; Moss G; Hernandez M; Miller SL
    Environ Sci Technol; 2005 Dec; 39(24):9656-64. PubMed ID: 16475348
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pilot study to detect airborne Mycobacterium tuberculosis exposure in a South African public healthcare facility outpatient clinic.
    Matuka O; Singh TS; Bryce E; Yassi A; Kgasha O; Zungu M; Kyaw K; Malotle M; Renton K; O'Hara L
    J Hosp Infect; 2015 Mar; 89(3):192-6. PubMed ID: 25623206
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bare-bulb Upper-Room Germicidal Ultraviolet-C (GUV) Indoor Air Disinfection for COVID-19
    Davidson BL
    Photochem Photobiol; 2021 May; 97(3):524-526. PubMed ID: 33438214
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A pilot study on the disinfection efficacy of localized UV on the flushing-generated spread of pathogens.
    Lai ACK; Nunayon SS; Tan TF; Li WS
    J Hazard Mater; 2018 Sep; 358():389-396. PubMed ID: 30005250
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Supplemental treatment of air in airborne infection isolation rooms using high-throughput in-room air decontamination units.
    Bergeron V; Chalfine A; Misset B; Moules V; Laudinet N; Carlet J; Lina B
    Am J Infect Control; 2011 May; 39(4):314-20. PubMed ID: 21095042
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modelling the risk of airborne infectious disease using exhaled air.
    Issarow CM; Mulder N; Wood R
    J Theor Biol; 2015 May; 372():100-6. PubMed ID: 25702940
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Efficacy of portable filtration units in reducing aerosolized particles in the size range of Mycobacterium tuberculosis.
    Rutala WA; Jones SM; Worthington JM; Reist PC; Weber DJ
    Infect Control Hosp Epidemiol; 1995 Jul; 16(7):391-8. PubMed ID: 7673644
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Using computational fluid dynamics modeling to evaluate the design of hospital ultraviolet germicidal irradiation systems for inactivating airborne mycobacteria.
    Xu P; Fisher N; Miller SL
    Photochem Photobiol; 2013; 89(4):792-8. PubMed ID: 23418820
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.