These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 26178649)

  • 1. Pathophysiology and clinical presentations of salt-losing tubulopathies.
    Seyberth HW
    Pediatr Nephrol; 2016 Mar; 31(3):407-18. PubMed ID: 26178649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bartter- and Gitelman-like syndromes: salt-losing tubulopathies with loop or DCT defects.
    Seyberth HW; Schlingmann KP
    Pediatr Nephrol; 2011 Oct; 26(10):1789-802. PubMed ID: 21503667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bartter's and Gitelman's syndrome.
    Seyberth HW; Weber S; Kömhoff M
    Curr Opin Pediatr; 2017 Apr; 29(2):179-186. PubMed ID: 27906863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnesium transport in the renal distal convoluted tubule.
    Dai LJ; Ritchie G; Kerstan D; Kang HS; Cole DE; Quamme GA
    Physiol Rev; 2001 Jan; 81(1):51-84. PubMed ID: 11152754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distal convoluted tubule.
    McCormick JA; Ellison DH
    Compr Physiol; 2015 Jan; 5(1):45-98. PubMed ID: 25589264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mouse model of type II Bartter's syndrome. II. Altered expression of renal sodium- and water-transporting proteins.
    Wagner CA; Loffing-Cueni D; Yan Q; Schulz N; Fakitsas P; Carrel M; Wang T; Verrey F; Geibel JP; Giebisch G; Hebert SC; Loffing J
    Am J Physiol Renal Physiol; 2008 Jun; 294(6):F1373-80. PubMed ID: 18322017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic causes of hypomagnesemia, a clinical overview.
    Viering DHHM; de Baaij JHF; Walsh SB; Kleta R; Bockenhauer D
    Pediatr Nephrol; 2017 Jul; 32(7):1123-1135. PubMed ID: 27234911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered renal distal tubule structure and renal Na(+) and Ca(2+) handling in a mouse model for Gitelman's syndrome.
    Loffing J; Vallon V; Loffing-Cueni D; Aregger F; Richter K; Pietri L; Bloch-Faure M; Hoenderop JG; Shull GE; Meneton P; Kaissling B
    J Am Soc Nephrol; 2004 Sep; 15(9):2276-88. PubMed ID: 15339977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacotyping of hypokalaemic salt-losing tubular disorders.
    Reinalter SC; Jeck N; Peters M; Seyberth HW
    Acta Physiol Scand; 2004 Aug; 181(4):513-21. PubMed ID: 15283765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of a high-sodium/low-potassium diet on renal calcium, magnesium, and phosphate handling.
    van der Wijst J; Tutakhel OAZ; Bos C; Danser AHJ; Hoorn EJ; Hoenderop JGJ; Bindels RJM
    Am J Physiol Renal Physiol; 2018 Jul; 315(1):F110-F122. PubMed ID: 29357414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical presentation of genetically defined patients with hypokalemic salt-losing tubulopathies.
    Peters M; Jeck N; Reinalter S; Leonhardt A; Tönshoff B; Klaus G Gü; Konrad M; Seyberth HW
    Am J Med; 2002 Feb; 112(3):183-90. PubMed ID: 11893344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loop disorders: insights derived from defined genotypes.
    Jeck N; Seyberth HW
    Nephron Physiol; 2011; 118(1):p7-14. PubMed ID: 21071987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of renal distal tubule transporters TRPM6 and NCC in a rat model of cyclosporine nephrotoxicity and effect of EGF treatment.
    Ledeganck KJ; Boulet GA; Horvath CA; Vinckx M; Bogers JJ; Van Den Bossche R; Verpooten GA; De Winter BY
    Am J Physiol Renal Physiol; 2011 Sep; 301(3):F486-93. PubMed ID: 21653632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Basis, Diagnostic Challenges and Therapeutic Approaches of Bartter and Gitelman Syndromes: A Primer for Clinicians.
    Nuñez-Gonzalez L; Carrera N; Garcia-Gonzalez MA
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maxi-K channels contribute to urinary potassium excretion in the ROMK-deficient mouse model of Type II Bartter's syndrome and in adaptation to a high-K diet.
    Bailey MA; Cantone A; Yan Q; MacGregor GG; Leng Q; Amorim JB; Wang T; Hebert SC; Giebisch G; Malnic G
    Kidney Int; 2006 Jul; 70(1):51-9. PubMed ID: 16710355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of renal Na-(K)-Cl cotransporters by vasopressin.
    Bachmann S; Mutig K
    Pflugers Arch; 2017 Aug; 469(7-8):889-897. PubMed ID: 28577072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The Gitelman syndrome--a differential diagnosis of Bartter syndrome].
    Zimmermann J; Reincke M; Schramm L; Harlos J; Allolio B
    Med Klin (Munich); 1994 Dec; 89(12):640-4. PubMed ID: 7869998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Magnesium homeostasis and its disturbances].
    Nakai K
    Clin Calcium; 2012 Aug; 22(8):1167-72. PubMed ID: 22846351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [From gene to disease; mutations in the SLC12A3 gene as the cause of Gitelman's syndrome].
    Cornelissen EA; Bindels RJ; Hoefsloot LH; Knoers NV
    Ned Tijdschr Geneeskd; 2005 Jun; 149(24):1330-3. PubMed ID: 16008036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural adaptation of the distal convoluted tubule to prolonged furosemide treatment.
    Kaissling B; Bachmann S; Kriz W
    Am J Physiol; 1985 Mar; 248(3 Pt 2):F374-81. PubMed ID: 3976898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.