These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 26179052)
1. Engineered antibody domains with significantly increased transcytosis and half-life in macaques mediated by FcRn. Ying T; Wang Y; Feng Y; Prabakaran P; Gong R; Wang L; Crowder K; Dimitrov DS MAbs; 2015; 7(5):922-30. PubMed ID: 26179052 [TBL] [Abstract][Full Text] [Related]
2. Engineered soluble monomeric IgG1 CH3 domain: generation, mechanisms of function, and implications for design of biological therapeutics. Ying T; Chen W; Feng Y; Wang Y; Gong R; Dimitrov DS J Biol Chem; 2013 Aug; 288(35):25154-25164. PubMed ID: 23867459 [TBL] [Abstract][Full Text] [Related]
3. Combined glyco- and protein-Fc engineering simultaneously enhance cytotoxicity and half-life of a therapeutic antibody. Monnet C; Jorieux S; Souyris N; Zaki O; Jacquet A; Fournier N; Crozet F; de Romeuf C; Bouayadi K; Urbain R; Behrens CK; Mondon P; Fontayne A MAbs; 2014; 6(2):422-36. PubMed ID: 24492301 [TBL] [Abstract][Full Text] [Related]
4. Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). Dall'Acqua WF; Kiener PA; Wu H J Biol Chem; 2006 Aug; 281(33):23514-24. PubMed ID: 16793771 [TBL] [Abstract][Full Text] [Related]
5. Cross-species analysis of Fc engineered anti-Lewis-Y human IgG1 variants in human neonatal receptor transgenic mice reveal importance of S254 and Y436 in binding human neonatal Fc receptor. Burvenich IJ; Farrugia W; Lee FT; Catimel B; Liu Z; Makris D; Cao D; O'Keefe GJ; Brechbiel MW; King D; Spirkoska V; Allan LC; Ramsland PA; Scott AM MAbs; 2016; 8(4):775-86. PubMed ID: 27030023 [TBL] [Abstract][Full Text] [Related]
6. Fc Engineering: Tailored Synthetic Human IgG1-Fc Repertoire for High-Affinity Interaction with FcRn at pH 6.0. Saxena A; Bai B; Hou SC; Jiang L; Ying T; Miersch S; Sidhu SS; Wu D Methods Mol Biol; 2018; 1827():399-417. PubMed ID: 30196509 [TBL] [Abstract][Full Text] [Related]
7. Neonatal Fc receptor (FcRn): a novel target for therapeutic antibodies and antibody engineering. Wang Y; Tian Z; Thirumalai D; Zhang X J Drug Target; 2014 May; 22(4):269-78. PubMed ID: 24404896 [TBL] [Abstract][Full Text] [Related]
8. An engineered affibody molecule with pH-dependent binding to FcRn mediates extended circulatory half-life of a fusion protein. Seijsing J; Lindborg M; Höidén-Guthenberg I; Bönisch H; Guneriusson E; Frejd FY; Abrahmsén L; Ekblad C; Löfblom J; Uhlén M; Gräslund T Proc Natl Acad Sci U S A; 2014 Dec; 111(48):17110-5. PubMed ID: 25406323 [TBL] [Abstract][Full Text] [Related]
9. Importance of neonatal FcR in regulating the serum half-life of therapeutic proteins containing the Fc domain of human IgG1: a comparative study of the affinity of monoclonal antibodies and Fc-fusion proteins to human neonatal FcR. Suzuki T; Ishii-Watabe A; Tada M; Kobayashi T; Kanayasu-Toyoda T; Kawanishi T; Yamaguchi T J Immunol; 2010 Feb; 184(4):1968-76. PubMed ID: 20083659 [TBL] [Abstract][Full Text] [Related]
10. Engineering neonatal Fc receptor-mediated recycling and transcytosis in recombinant proteins by short terminal peptide extensions. Sockolosky JT; Tiffany MR; Szoka FC Proc Natl Acad Sci U S A; 2012 Oct; 109(40):16095-100. PubMed ID: 22991460 [TBL] [Abstract][Full Text] [Related]
11. The neonatal Fc receptor (FcRn) binds independently to both sites of the IgG homodimer with identical affinity. Abdiche YN; Yeung YA; Chaparro-Riggers J; Barman I; Strop P; Chin SM; Pham A; Bolton G; McDonough D; Lindquist K; Pons J; Rajpal A MAbs; 2015; 7(2):331-43. PubMed ID: 25658443 [TBL] [Abstract][Full Text] [Related]
13. In vitro and in vivo methods for assessing FcRn-mediated reverse transcytosis across the blood-brain barrier. Caram-Salas N; Boileau E; Farrington GK; Garber E; Brunette E; Abulrob A; Stanimirovic D Methods Mol Biol; 2011; 763():383-401. PubMed ID: 21874466 [TBL] [Abstract][Full Text] [Related]
14. Extended plasma half-life of albumin-binding domain fused human IgA upon pH-dependent albumin engagement of human FcRn Mester S; Evers M; Meyer S; Nilsen J; Greiff V; Sandlie I; Leusen J; Andersen JT MAbs; 2021; 13(1):1893888. PubMed ID: 33691596 [TBL] [Abstract][Full Text] [Related]
15. Fc Engineering of Human IgG1 for Altered Binding to the Neonatal Fc Receptor Affects Fc Effector Functions. Grevys A; Bern M; Foss S; Bratlie DB; Moen A; Gunnarsen KS; Aase A; Michaelsen TE; Sandlie I; Andersen JT J Immunol; 2015 Jun; 194(11):5497-508. PubMed ID: 25904551 [TBL] [Abstract][Full Text] [Related]
16. Reduced FcRn-mediated transcytosis of IgG2 due to a missing Glycine in its lower hinge. Stapleton NM; Brinkhaus M; Armour KL; Bentlage AEH; de Taeye SW; Temming AR; Mok JY; Brasser G; Maas M; van Esch WJE; Clark MR; Williamson LM; van der Schoot CE; Vidarsson G Sci Rep; 2019 May; 9(1):7363. PubMed ID: 31089170 [TBL] [Abstract][Full Text] [Related]
17. A novel in vitro assay to predict neonatal Fc receptor-mediated human IgG half-life. Souders CA; Nelson SC; Wang Y; Crowley AR; Klempner MS; Thomas W MAbs; 2015; 7(5):912-21. PubMed ID: 26018774 [TBL] [Abstract][Full Text] [Related]
18. pH-dependent binding engineering reveals an FcRn affinity threshold that governs IgG recycling. Borrok MJ; Wu Y; Beyaz N; Yu XQ; Oganesyan V; Dall'Acqua WF; Tsui P J Biol Chem; 2015 Feb; 290(7):4282-90. PubMed ID: 25538249 [TBL] [Abstract][Full Text] [Related]
19. Antibody Fc engineering for enhanced neonatal Fc receptor binding and prolonged circulation half-life. Mackness BC; Jaworski JA; Boudanova E; Park A; Valente D; Mauriac C; Pasquier O; Schmidt T; Kabiri M; Kandira A; Radošević K; Qiu H MAbs; 2019 Oct; 11(7):1276-1288. PubMed ID: 31216930 [TBL] [Abstract][Full Text] [Related]
20. Short FcRn-Binding Peptides Enable Salvage and Transcytosis of scFv Antibody Fragments. Kelly VW; Sirk SJ ACS Chem Biol; 2022 Feb; 17(2):404-413. PubMed ID: 35050570 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]