These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26179061)

  • 41. [Biochemical and physiological aspects of chlorophyll breakdown].
    Zalewska M; Tukaj Z
    Postepy Biochem; 2019 Jun; 65(2):128-134. PubMed ID: 31642651
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Role for TIC55 as a Hydroxylase of Phyllobilins, the Products of Chlorophyll Breakdown during Plant Senescence.
    Hauenstein M; Christ B; Das A; Aubry S; Hörtensteiner S
    Plant Cell; 2016 Oct; 28(10):2510-2527. PubMed ID: 27655840
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Catalytic and structural properties of pheophytinase, the phytol esterase involved in chlorophyll breakdown.
    Guyer L; Salinger K; Krügel U; Hörtensteiner S
    J Exp Bot; 2018 Feb; 69(4):879-889. PubMed ID: 29036670
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chlorophyll Catabolites in Fall Leaves of the Wych Elm Tree Present a Novel Glycosylation Motif.
    Scherl M; Müller T; Kreutz CR; Huber RG; Zass E; Liedl KR; Kräutler B
    Chemistry; 2016 Jul; 22(28):9498-503. PubMed ID: 27128523
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chlorophyll breakdown in spinach: on the structure of five nonfluorescent chlorophyll catabolites.
    Berghold J; Breuker K; Oberhuber M; Hörtensteiner S; Kräutler B
    Photosynth Res; 2002; 74(2):109-19. PubMed ID: 16228549
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Crystallization and preliminary X-ray characterization of the tetrapyrrole-biosynthetic enzyme porphobilinogen deaminase from Arabidopsis thaliana.
    Roberts A; Gill R; Hussey RJ; Mikolajek H; Erskine PT; Cooper JB; Wood SP; Chrystal EJ; Shoolingin-Jordan PM
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 Dec; 68(Pt 12):1491-3. PubMed ID: 23192030
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tetrapyrrole biosynthesis in higher plants.
    Tanaka R; Tanaka A
    Annu Rev Plant Biol; 2007; 58():321-46. PubMed ID: 17227226
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Photochemical studies of a fluorescent chlorophyll catabolite--source of bright blue fluorescence in plant tissue and efficient sensitizer of singlet oxygen.
    Jockusch S; Turro NJ; Banala S; Kräutler B
    Photochem Photobiol Sci; 2014 Feb; 13(2):407-11. PubMed ID: 24398916
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Breakdown of Chlorophyll in Higher Plants--Phyllobilins as Abundant, Yet Hardly Visible Signs of Ripening, Senescence, and Cell Death.
    Kräutler B
    Angew Chem Int Ed Engl; 2016 Apr; 55(16):4882-907. PubMed ID: 26919572
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Novel Types of Hypermodified Fluorescent Phyllobilins from Breakdown of Chlorophyll in Senescent Leaves of Grapevine (Vitis vinifera).
    Erhart T; Mittelberger C; Liu X; Podewitz M; Li C; Scherzer G; Stoll G; Valls J; Robatscher P; Liedl KR; Oberhuber M; Kräutler B
    Chemistry; 2018 Nov; 24(65):17268-17279. PubMed ID: 30079972
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A dioxobilane as product of a divergent path of chlorophyll breakdown in Norway maple.
    Müller T; Rafelsberger M; Vergeiner C; Kräutler B
    Angew Chem Int Ed Engl; 2011 Nov; 50(45):10724-7. PubMed ID: 21928453
    [No Abstract]   [Full Text] [Related]  

  • 52. GluTR2 complements a hema1 mutant lacking glutamyl-tRNA reductase 1, but is differently regulated at the post-translational level.
    Apitz J; Schmied J; Lehmann MJ; Hedtke B; Grimm B
    Plant Cell Physiol; 2014 Mar; 55(3):645-57. PubMed ID: 24449654
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Methods for analysis of photosynthetic pigments and steady-state levels of intermediates of tetrapyrrole biosynthesis.
    Czarnecki O; Peter E; Grimm B
    Methods Mol Biol; 2011; 775():357-85. PubMed ID: 21863454
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The cell biology of tetrapyrroles: a life and death struggle.
    Mochizuki N; Tanaka R; Grimm B; Masuda T; Moulin M; Smith AG; Tanaka A; Terry MJ
    Trends Plant Sci; 2010 Sep; 15(9):488-98. PubMed ID: 20598625
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Crystal structures of the substrate-bound forms of red chlorophyll catabolite reductase: implications for site-specific and stereospecific reaction.
    Sugishima M; Okamoto Y; Noguchi M; Kohchi T; Tamiaki H; Fukuyama K
    J Mol Biol; 2010 Oct; 402(5):879-91. PubMed ID: 20727901
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Light-independent cell death induced by accumulation of pheophorbide a in Arabidopsis thaliana.
    Hirashima M; Tanaka R; Tanaka A
    Plant Cell Physiol; 2009 Apr; 50(4):719-29. PubMed ID: 19273468
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Analysis of the chlorophyll catabolism pathway in leaves of an introgression senescence mutant of Lolium temulentum.
    Roca M; James C; Pruzinská A; Hörtensteiner S; Thomas H; Ougham H
    Phytochemistry; 2004 May; 65(9):1231-8. PubMed ID: 15184007
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Partial Purification and Characterization of Red Chlorophyll Catabolite Reductase, a Stroma Protein Involved in Chlorophyll Breakdown.
    Rodoni S; Vicentini F; Schellenberg M; Matile P; Hortensteiner S
    Plant Physiol; 1997 Oct; 115(2):677-682. PubMed ID: 12223836
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An evergreen mind and a heart for the colors of fall.
    Aubry S; Christ B; Kräutler B; Martinoia E; Thomas H; Zipfel C
    J Exp Bot; 2021 Jun; 72(13):4625-4633. PubMed ID: 33860301
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phyllobilins--the abundant bilin-type tetrapyrrolic catabolites of the green plant pigment chlorophyll.
    Kräutler B
    Chem Soc Rev; 2014 Sep; 43(17):6227-38. PubMed ID: 24898066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.