These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 26179121)

  • 1. Study of acidified ignitable liquid residues in fire debris by solid-phase microextraction with gas chromatography and mass spectrometry.
    Martín-Alberca C; García-Ruiz C; Delémont O
    J Sep Sci; 2015 Sep; 38(18):3218-3227. PubMed ID: 26179121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel method based on ion mobility spectrometry sum spectrum for the characterization of ignitable liquids in fire debris.
    Aliaño-González MJ; Ferreiro-González M; Barbero GF; Palma M
    Talanta; 2019 Jul; 199():189-194. PubMed ID: 30952245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrimination of Ignitable Liquid Residues in Burned Petroleum-Derived Substrates by Using HS-MS eNose and Chemometrics.
    Falatová B; Ferreiro-González M; P Calle JL; Álvarez JÁ; Palma M
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33530319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid GC-MS as a Screening Tool for Forensic Fire Debris Analysis.
    Capistran BA; Sisco E
    Forensic Chem; 2022 Sep; 30():. PubMed ID: 36733494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanotubes-assisted solid-phase microextraction for the extraction of gasoline in fire debris samples.
    Huang TY; Yu JCC
    J Chromatogr A; 2023 Jul; 1701():464063. PubMed ID: 37201431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of micro-bore wall-coated open-tubular capillaries with low phase ratios for fast-gas chromatography-mass spectrometry: Application to ignitable liquids and fire debris.
    Roberson ZR; Goodpaster JV
    Sci Justice; 2019 Nov; 59(6):630-634. PubMed ID: 31606100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition of gasoline in fire debris using machine learning: Part I, application of random forest, gradient boosting, support vector machine, and naïve bayes.
    Bogdal C; Schellenberg R; Höpli O; Bovens M; Lory M
    Forensic Sci Int; 2022 Feb; 331():111146. PubMed ID: 34968789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of an untargeted chemometric approach for the source inference of ignitable liquids in forensic science.
    de Figueiredo M; Cordella CBY; Jouan-Rimbaud Bouveresse D; Archer X; Bégué JM; Rutledge DN
    Forensic Sci Int; 2019 Feb; 295():8-18. PubMed ID: 30553191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of thermal environment in fire on the identification of gasoline combustion residues.
    Jin J; Chi J; Xue T; Xu J; Liu L; Li Y; Deng L; Zhang J
    Forensic Sci Int; 2020 Oct; 315():110430. PubMed ID: 32738673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementation of SPME and Rapid GC-MS as a Screening Approach for Forensic Fire Debris Applications.
    Capistran BA
    Forensic Chem; 2024 May; 38():. PubMed ID: 38496790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sampling and recovery of ignitable liquid residues (ILRs) from fire debris using capillary microextraction of volatiles (CMV) for on-site analysis.
    Valdes NB; Almirall JR
    J Forensic Sci; 2023 Mar; 68(2):629-637. PubMed ID: 36715133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognition of gasoline in fire debris using machine learning: Part II, application of a neural network.
    Bogdal C; Schellenberg R; Lory M; Bovens M; Höpli O
    Forensic Sci Int; 2022 Mar; 332():111177. PubMed ID: 35065332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of artificial intelligence to detect gasoline in fire debris using HS-SPME-GC/MS and transfer learning.
    Huang TY; Chung Yu JC
    J Forensic Sci; 2024 Jul; 69(4):1222-1234. PubMed ID: 38798027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A UK-based ground truth data set of GCMS analysed ignitable liquid samples - a template for making chromatographic data accessible as an open source data set.
    Miller J; Puch-Solis R; Mat Desa WNS; Nic Daeid N
    Data Brief; 2022 Dec; 45():108670. PubMed ID: 36425998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Analysis of accelerant in fire debris by pyrolysis gas chromatography-mass spectrometry].
    Zhang J; Liu J
    Se Pu; 2019 Apr; 37(4):426-431. PubMed ID: 30977346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determining the Method Threshold of Identification via Gas Chromatography-Mass Spectrometry of Weathered Gasoline Extracted from Burnt Nylon Carpet.
    Hondrogiannis EM; Newton C; Alibozek R
    J Forensic Sci; 2019 Jul; 64(4):1160-1168. PubMed ID: 30681140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of gasoline on suspects' hands: Study of different sampling alternatives.
    Büchler L; Werner D; Delémont O
    Forensic Sci Int; 2021 Jan; 318():110590. PubMed ID: 33278695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The application of comprehensive two-dimensional gas chromatography to the analysis of wildfire debris for ignitable liquid residue.
    Kates LN; Richards PI; Sandau CD
    Forensic Sci Int; 2020 May; 310():110256. PubMed ID: 32229064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of decision tree and naïve Bayes algorithms in detecting trace residue of gasoline based on gas chromatography-mass spectrometry data.
    Md Ghazi MGB; Chuen Lee L; Samsudin AS; Sino H
    Forensic Sci Res; 2023 Sep; 8(3):249-255. PubMed ID: 38221967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volatile organic compound analysis of accelerant detection canine distractor odours.
    Leung D; Forbes S; Maynard P
    Forensic Sci Int; 2019 Oct; 303():109953. PubMed ID: 31546168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.