These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 26179373)
1. Genomic architecture of habitat-related divergence and signature of directional selection in the body shapes of Gnathopogon fishes. Kakioka R; Kokita T; Kumada H; Watanabe K; Okuda N Mol Ecol; 2015 Aug; 24(16):4159-74. PubMed ID: 26179373 [TBL] [Abstract][Full Text] [Related]
2. A RAD-based linkage map and comparative genomics in the gudgeons (genus Gnathopogon, Cyprinidae). Kakioka R; Kokita T; Kumada H; Watanabe K; Okuda N BMC Genomics; 2013 Jan; 14():32. PubMed ID: 23324215 [TBL] [Abstract][Full Text] [Related]
3. Evidence for morphological and adaptive genetic divergence between lake and stream habitats in European minnows (Phoxinus phoxinus, Cyprinidae). Collin H; Fumagalli L Mol Ecol; 2011 Nov; 20(21):4490-502. PubMed ID: 21951706 [TBL] [Abstract][Full Text] [Related]
4. Genomic architecture of ecologically divergent body shape in a pair of sympatric crater lake cichlid fishes. Franchini P; Fruciano C; Spreitzer ML; Jones JC; Elmer KR; Henning F; Meyer A Mol Ecol; 2014 Apr; 23(7):1828-45. PubMed ID: 24237636 [TBL] [Abstract][Full Text] [Related]
5. The genetic architecture of ecological speciation and the association with signatures of selection in natural lake whitefish (Coregonus sp. Salmonidae) species pairs. Rogers SM; Bernatchez L Mol Biol Evol; 2007 Jun; 24(6):1423-38. PubMed ID: 17404398 [TBL] [Abstract][Full Text] [Related]
6. Genetic architecture of traits associated with reproductive barriers in Silene: Coupling, sex chromosomes and variation. Liu X; Karrenberg S Mol Ecol; 2018 Oct; 27(19):3889-3904. PubMed ID: 29577481 [TBL] [Abstract][Full Text] [Related]
7. RAD-QTL Mapping Reveals Both Genome-Level Parallelism and Different Genetic Architecture Underlying the Evolution of Body Shape in Lake Whitefish (Coregonus clupeaformis) Species Pairs. Laporte M; Rogers SM; Dion-Côté AM; Normandeau E; Gagnaire PA; Dalziel AC; Chebib J; Bernatchez L G3 (Bethesda); 2015 May; 5(7):1481-91. PubMed ID: 26002924 [TBL] [Abstract][Full Text] [Related]
8. The genetics of adaptive shape shift in stickleback: pleiotropy and effect size. Albert AY; Sawaya S; Vines TH; Knecht AK; Miller CT; Summers BR; Balabhadra S; Kingsley DM; Schluter D Evolution; 2008 Jan; 62(1):76-85. PubMed ID: 18005154 [TBL] [Abstract][Full Text] [Related]
9. Mapping phenotypic, expression and transmission ratio distortion QTL using RAD markers in the Lake Whitefish (Coregonus clupeaformis). Gagnaire PA; Normandeau E; Pavey SA; Bernatchez L Mol Ecol; 2013 Jun; 22(11):3036-48. PubMed ID: 23181719 [TBL] [Abstract][Full Text] [Related]
10. Genetic architecture of skeletal evolution in European lake and stream stickleback. Berner D; Moser D; Roesti M; Buescher H; Salzburger W Evolution; 2014 Jun; 68(6):1792-805. PubMed ID: 24571250 [TBL] [Abstract][Full Text] [Related]
11. Genetic architecture of traits associated with serpentine adaptation of Silene vulgaris. Bratteler M; Lexer C; Widmer A J Evol Biol; 2006 Jul; 19(4):1149-56. PubMed ID: 16780515 [TBL] [Abstract][Full Text] [Related]
12. Quantitative trait locus analysis of body shape divergence in nine-spined sticklebacks based on high-density SNP-panel. Yang J; Guo B; Shikano T; Liu X; Merilä J Sci Rep; 2016 May; 6():26632. PubMed ID: 27226078 [TBL] [Abstract][Full Text] [Related]
13. QTL analysis of a rapidly evolving speciation phenotype in the Hawaiian cricket Laupala. Shaw KL; Parsons YM; Lesnick SC Mol Ecol; 2007 Jul; 16(14):2879-92. PubMed ID: 17614904 [TBL] [Abstract][Full Text] [Related]
14. The genetic basis of adaptive population differentiation: a quantitative trait locus analysis of fitness traits in two wild barley populations from contrasting habitats. Verhoeven KJ; Vanhala TK; Biere A; Nevo E; van Damme JM Evolution; 2004 Feb; 58(2):270-83. PubMed ID: 15068345 [TBL] [Abstract][Full Text] [Related]
15. Genetic architecture of novel traits in the hopi sunflower. Wills DM; Abdel-Haleem H; Knapp SJ; Burke JM J Hered; 2010; 101(6):727-36. PubMed ID: 20696668 [TBL] [Abstract][Full Text] [Related]
16. A novel resource polymorphism in fish, driven by differential bottom environments: an example from an ancient lake in Japan. Komiya T; Fujita S; Watanabe K PLoS One; 2011 Feb; 6(2):e17430. PubMed ID: 21387005 [TBL] [Abstract][Full Text] [Related]
17. Geometric morphometric analyses provide evidence for the adaptive character of the Tanganyikan cichlid fish radiations. Clabaut C; Bunje PM; Salzburger W; Meyer A Evolution; 2007 Mar; 61(3):560-78. PubMed ID: 17348920 [TBL] [Abstract][Full Text] [Related]
18. QTL for the species-specific male and female genital morphologies in Ohomopterus ground beetles. Sasabe M; Takami Y; Sota T Mol Ecol; 2010 Dec; 19(23):5231-9. PubMed ID: 21040054 [TBL] [Abstract][Full Text] [Related]
19. Habitat-specific natural selection at a flowering-time QTL is a main driver of local adaptation in two wild barley populations. Verhoeven KJ; Poorter H; Nevo E; Biere A Mol Ecol; 2008 Jul; 17(14):3416-24. PubMed ID: 18573164 [TBL] [Abstract][Full Text] [Related]
20. A Major Locus Controls a Genital Shape Difference Involved in Reproductive Isolation Between Drosophila yakuba and Drosophila santomea. Peluffo AE; Nuez I; Debat V; Savisaar R; Stern DL; Orgogozo V G3 (Bethesda); 2015 Oct; 5(12):2893-901. PubMed ID: 26511499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]