These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
453 related articles for article (PubMed ID: 26179401)
1. Pest control and resistance management through release of insects carrying a male-selecting transgene. Harvey-Samuel T; Morrison NI; Walker AS; Marubbi T; Yao J; Collins HL; Gorman K; Davies TG; Alphey N; Warner S; Shelton AM; Alphey L BMC Biol; 2015 Jul; 13():49. PubMed ID: 26179401 [TBL] [Abstract][Full Text] [Related]
2. Effect of Bt broccoli and resistant genotype of Plutella xylostella (Lepidoptera: Plutellidae) on development and host acceptance of the parasitoid Diadegma insulare (Hymenoptera: Ichneumonidae). Liu X; Chen M; Onstad D; Roush R; Shelton AM Transgenic Res; 2011 Aug; 20(4):887-97. PubMed ID: 21181494 [TBL] [Abstract][Full Text] [Related]
3. Effects of Bt plants on the development and survival of the parasitoid Cotesia plutellae (Hymenoptera: Braconidae) in susceptible and Bt-resistant larvae of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Schuler TH; Denholm I; Clark SJ; Stewart CN; Poppy GM J Insect Physiol; 2004 May; 50(5):435-43. PubMed ID: 15121457 [TBL] [Abstract][Full Text] [Related]
4. Modeling the integration of parasitoid, insecticide, and transgenic insecticidal crop for the long-term control of an insect pest. Onstad DW; Liu X; Chen M; Roush R; Shelton AM J Econ Entomol; 2013 Jun; 106(3):1103-11. PubMed ID: 23865173 [TBL] [Abstract][Full Text] [Related]
5. Tritrophic choice experiments with bt plants, the diamondback moth (Plutella xylostella) and the parasitoid Cotesia plutellae. Schuler TH; Potting RP; Denholm I; Clark SJ; Clark AJ; Stewart CN; Poppy GM Transgenic Res; 2003 Jun; 12(3):351-61. PubMed ID: 12779123 [TBL] [Abstract][Full Text] [Related]
6. Insect pathogens as biological control agents: Back to the future. Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455 [TBL] [Abstract][Full Text] [Related]
7. Influences of Cry1Ac broccoli on larval survival and oviposition of diamondback moth. Yi D; Cui S; Yang L; Fang Z; Liu Y; Zhuang M; Zhang Y J Insect Sci; 2015; 15(1):. PubMed ID: 25843583 [TBL] [Abstract][Full Text] [Related]
8. Greenhouse tests on resistance management of Bt transgenic plants using refuge strategies. Tang JD; Collins HL; Metz TD; Earle ED; Zhao JZ; Roush RT; Shelton AM J Econ Entomol; 2001 Feb; 94(1):240-7. PubMed ID: 11233120 [TBL] [Abstract][Full Text] [Related]
9. Different cross-resistance patterns in the diamondback moth (Lepidoptera: Plutellidae) resistant to Bacillus thuringiensis toxin Cry1C. Zhao JZ; Li YX; Collins HL; Cao J; Earle ED; Shelton AM J Econ Entomol; 2001 Dec; 94(6):1547-52. PubMed ID: 11777062 [TBL] [Abstract][Full Text] [Related]
10. Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants. Zhao JZ; Cao J; Collins HL; Bates SL; Roush RT; Earle ED; Shelton AM Proc Natl Acad Sci U S A; 2005 Jun; 102(24):8426-30. PubMed ID: 15939892 [TBL] [Abstract][Full Text] [Related]
11. Inheritance and fitness costs of resistance to Bacillus thuringiensis toxin Cry2Ad in laboratory strains of the diamondback moth, Plutella xylostella (L.). Liao J; Xue Y; Xiao G; Xie M; Huang S; You S; Wyckhuys KAG; You M Sci Rep; 2019 Apr; 9(1):6113. PubMed ID: 30992491 [TBL] [Abstract][Full Text] [Related]
12. Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Zhao JZ; Cao J; Li Y; Collins HL; Roush RT; Earle ED; Shelton AM Nat Biotechnol; 2003 Dec; 21(12):1493-7. PubMed ID: 14608363 [TBL] [Abstract][Full Text] [Related]
13. Self-limiting fall armyworm: a new approach in development for sustainable crop protection and resistance management. Reavey CE; Walker AS; Joyce SP; Broom L; Willse A; Ercit K; Poletto M; Barnes ZH; Marubbi T; Troczka BJ; Treanor D; Beadle K; Granville B; de Mello V; Teal J; Sulston E; Ashton A; Akilan L; Naish N; Stevens O; Humphreys-Jones N; Warner SAJ; Spinner SAM; Rose NR; Head G; Morrison NI; Matzen KJ BMC Biotechnol; 2022 Jan; 22(1):5. PubMed ID: 35086540 [TBL] [Abstract][Full Text] [Related]
14. Prey-mediated effects of transgenic canola on a beneficial, non-target, carabid beetle. Ferry N; Mulligan EA; Stewart CN; Tabashnik BE; Port GR; Gatehouse AM Transgenic Res; 2006 Aug; 15(4):501-14. PubMed ID: 16906450 [TBL] [Abstract][Full Text] [Related]
15. The compatibility of a nucleopolyhedrosis virus control with resistance management for Bacillus thuringiensis: co-infection and cross-resistance studies with the diamondback moth, Plutella xylostella. Raymond B; Sayyed AH; Wright DJ J Invertebr Pathol; 2006 Oct; 93(2):114-20. PubMed ID: 16905146 [TBL] [Abstract][Full Text] [Related]
17. Bt transgenic crops do not have favorable effects on resistant insects. Tabashnik BE; Carrière Y J Insect Sci; 2004; 4():4. PubMed ID: 15861220 [TBL] [Abstract][Full Text] [Related]
18. Potential shortfall of pyramided transgenic cotton for insect resistance management. Brévault T; Heuberger S; Zhang M; Ellers-Kirk C; Ni X; Masson L; Li X; Tabashnik BE; Carrière Y Proc Natl Acad Sci U S A; 2013 Apr; 110(15):5806-11. PubMed ID: 23530245 [TBL] [Abstract][Full Text] [Related]
19. Impact of single-gene and dual-gene Bt broccoli on the herbivore Pieris rapae (Lepidoptera: Pieridae) and its pupal endoparasitoid Pteromalus puparum (Hymenoptera: Pteromalidae). Chen M; Zhao JZ; Shelton AM; Cao J; Earle ED Transgenic Res; 2008 Aug; 17(4):545-55. PubMed ID: 17851777 [TBL] [Abstract][Full Text] [Related]
20. Suppressing resistance to Bt cotton with sterile insect releases. Tabashnik BE; Sisterson MS; Ellsworth PC; Dennehy TJ; Antilla L; Liesner L; Whitlow M; Staten RT; Fabrick JA; Unnithan GC; Yelich AJ; Ellers-Kirk C; Harpold VS; Li X; Carrière Y Nat Biotechnol; 2010 Dec; 28(12):1304-7. PubMed ID: 21057498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]