These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

453 related articles for article (PubMed ID: 26179401)

  • 41. Assessing the Single and Combined Toxicity of Chlorantraniliprole and
    Shabbir MZ; He L; Shu C; Yin F; Zhang J; Li ZY
    Toxins (Basel); 2021 Mar; 13(3):. PubMed ID: 33809820
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Extended monitoring of resistance to Bacillus thuringiensis Cry1Ab maize in Diatraea saccharalis (Lepidoptera: Crambidae).
    Huang F; Ghimire MN; Leonard BR; Daves C; Levy R; Baldwin J
    GM Crops Food; 2012; 3(3):245-54. PubMed ID: 22688686
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Life-History Traits of Spodoptera frugiperda Populations Exposed to Low-Dose Bt Maize.
    Sousa FF; Mendes SM; Santos-Amaya OF; Araújo OG; Oliveira EE; Pereira EJ
    PLoS One; 2016; 11(5):e0156608. PubMed ID: 27243977
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Combining Steinernema carpocapsae and Bacillus thuringienis strains for control of diamondback moth (Plutella xylostella).
    Yi X; Ehlers RU
    Commun Agric Appl Biol Sci; 2006; 71(3 Pt A):633-6. PubMed ID: 17390802
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bt maize and integrated pest management--a European perspective.
    Meissle M; Romeis J; Bigler F
    Pest Manag Sci; 2011 Sep; 67(9):1049-58. PubMed ID: 21710684
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Minimizing IP issues associated with gene constructs encoding the Bt toxin - a case study.
    Hassan MM; Tenazas F; Williams A; Chiu JW; Robin C; Russell DA; Golz JF
    BMC Biotechnol; 2024 Jun; 24(1):37. PubMed ID: 38825715
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Down-regulation of a novel ABC transporter gene (Pxwhite) is associated with Cry1Ac resistance in the diamondback moth, Plutella xylostella (L.).
    Guo Z; Kang S; Zhu X; Xia J; Wu Q; Wang S; Xie W; Zhang Y
    Insect Biochem Mol Biol; 2015 Apr; 59():30-40. PubMed ID: 25636859
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genetic control of Plutella xylostella in omics era.
    Chen W; Yang F; Xu X; Kumar U; He W; You M
    Arch Insect Biochem Physiol; 2019 Nov; 102(3):e21621. PubMed ID: 31538676
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Field-Evolved Resistance in Corn Earworm to Cry Proteins Expressed by Transgenic Sweet Corn.
    Dively GP; Venugopal PD; Finkenbinder C
    PLoS One; 2016; 11(12):e0169115. PubMed ID: 28036388
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Field tests on managing resistance to Bt-engineered plants.
    Shelton AM; Tang JD; Roush RT; Metz TD; Earle ED
    Nat Biotechnol; 2000 Mar; 18(3):339-42. PubMed ID: 10700153
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cry64Ba and Cry64Ca, Two ETX/MTX2-Type Bacillus thuringiensis Insecticidal Proteins Active against Hemipteran Pests.
    Liu Y; Wang Y; Shu C; Lin K; Song F; Bravo A; Soberón M; Zhang J
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150505
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lack of fitness costs and inheritance of resistance to Bacillus thuringiensis Cry1Ac toxin in a near-isogenic strain of Plutella xylostella (Lepidoptera: Plutellidae).
    Zhu X; Yang Y; Wu Q; Wang S; Xie W; Guo Z; Kang S; Xia J; Zhang Y
    Pest Manag Sci; 2016 Feb; 72(2):289-97. PubMed ID: 25684167
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Field-evolved resistance: assessing the problem and ways to move forward.
    Sumerford DV; Head GP; Shelton A; Greenplate J; Moar W
    J Econ Entomol; 2013 Aug; 106(4):1525-34. PubMed ID: 24020262
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tri-trophic studies using Cry1Ac-resistant Plutella xylostella demonstrate no adverse effects of Cry1Ac on the entomopathogenic nematode, Heterorhabditis bacteriophora.
    Gautam S; Olmstead D; Tian JC; Collins HL; Shelton AM
    J Econ Entomol; 2014 Feb; 107(1):115-20. PubMed ID: 24665692
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Helicoverpa zea and Bt cotton in the United States.
    Luttrell RG; Jackson RE
    GM Crops Food; 2012; 3(3):213-27. PubMed ID: 22688690
    [TBL] [Abstract][Full Text] [Related]  

  • 56. ABC transporter mis-splicing associated with resistance to Bt toxin Cry2Ab in laboratory- and field-selected pink bollworm.
    Mathew LG; Ponnuraj J; Mallappa B; Chowdary LR; Zhang J; Tay WT; Walsh TK; Gordon KHJ; Heckel DG; Downes S; Carrière Y; Li X; Tabashnik BE; Fabrick JA
    Sci Rep; 2018 Sep; 8(1):13531. PubMed ID: 30202031
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimizing pyramided transgenic Bt crops for sustainable pest management.
    Carrière Y; Crickmore N; Tabashnik BE
    Nat Biotechnol; 2015 Feb; 33(2):161-8. PubMed ID: 25599179
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis.
    Tabashnik BE; Liu YB; Malvar T; Heckel DG; Masson L; Ballester V; Granero F; Ménsua JL; Ferré J
    Proc Natl Acad Sci U S A; 1997 Nov; 94(24):12780-5. PubMed ID: 9371752
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genetic and biochemical characterization of field-evolved resistance to Bacillus thuringiensis toxin Cry1Ac in the diamondback moth, Plutella xylostella.
    Sayyed AH; Raymond B; Ibiza-Palacios MS; Escriche B; Wright DJ
    Appl Environ Microbiol; 2004 Dec; 70(12):7010-7. PubMed ID: 15574894
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Resistance to Bacillus thuringiensis linked with a cadherin transmembrane mutation affecting cellular trafficking in pink bollworm from China.
    Wang L; Ma Y; Wan P; Liu K; Xiao Y; Wang J; Cong S; Xu D; Wu K; Fabrick JA; Li X; Tabashnik BE
    Insect Biochem Mol Biol; 2018 Mar; 94():28-35. PubMed ID: 29408651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.