These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 26179916)

  • 21. Efficient protein targeting to the inner nuclear membrane requires Atlastin-dependent maintenance of ER topology.
    Pawar S; Ungricht R; Tiefenboeck P; Leroux JC; Kutay U
    Elife; 2017 Aug; 6():. PubMed ID: 28826471
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cotranslational integration and initial sorting at the endoplasmic reticulum translocon of proteins destined for the inner nuclear membrane.
    Saksena S; Shao Y; Braunagel SC; Summers MD; Johnson AE
    Proc Natl Acad Sci U S A; 2004 Aug; 101(34):12537-42. PubMed ID: 15306686
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The nuclear localization signal of the human Ku70 is a variant bipartite type recognized by the two components of nuclear pore-targeting complex.
    Koike M; Ikuta T; Miyasaka T; Shiomi T
    Exp Cell Res; 1999 Aug; 250(2):401-13. PubMed ID: 10413594
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Truncated isoforms of Kap60 facilitate trafficking of Heh2 to the nuclear envelope.
    Liu D; Wu X; Summers MD; Lee A; Ryan KJ; Braunagel SC
    Traffic; 2010 Dec; 11(12):1506-18. PubMed ID: 20846261
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Destination: inner nuclear membrane.
    Katta SS; Smoyer CJ; Jaspersen SL
    Trends Cell Biol; 2014 Apr; 24(4):221-9. PubMed ID: 24268652
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A classical NLS and the SUN domain contribute to the targeting of SUN2 to the inner nuclear membrane.
    Turgay Y; Ungricht R; Rothballer A; Kiss A; Csucs G; Horvath P; Kutay U
    EMBO J; 2010 Jul; 29(14):2262-75. PubMed ID: 20551905
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural and Calorimetric Studies Demonstrate that Xeroderma Pigmentosum Type G (XPG) Can Be Imported to the Nucleus by a Classical Nuclear Import Pathway via a Monopartite NLS Sequence.
    Barros AC; Takeda AA; Dreyer TR; Velazquez-Campoy A; Kobe B; Fontes MR
    J Mol Biol; 2016 May; 428(10 Pt A):2120-31. PubMed ID: 26812207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reconstitution of nuclear protein transport with semi-intact yeast cells.
    Schlenstedt G; Hurt E; Doye V; Silver PA
    J Cell Biol; 1993 Nov; 123(4):785-98. PubMed ID: 8227140
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Traversing the NPC along the pore membrane: targeting of membrane proteins to the INM.
    Antonin W; Ungricht R; Kutay U
    Nucleus; 2011; 2(2):87-91. PubMed ID: 21738830
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Correlation between nucleocytoplasmic transport and caspase-3-dependent dismantling of nuclear pores during apoptosis.
    Kihlmark M; Rustum C; Eriksson C; Beckman M; Iverfeldt K; Hallberg E
    Exp Cell Res; 2004 Feb; 293(2):346-56. PubMed ID: 14729472
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The yeast integral membrane protein Apq12 potentially links membrane dynamics to assembly of nuclear pore complexes.
    Scarcelli JJ; Hodge CA; Cole CN
    J Cell Biol; 2007 Aug; 178(5):799-812. PubMed ID: 17724120
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Live imaging and modeling of inner nuclear membrane targeting reveals its molecular requirements in mammalian cells.
    Boni A; Politi AZ; Strnad P; Xiang W; Hossain MJ; Ellenberg J
    J Cell Biol; 2015 Jun; 209(5):705-20. PubMed ID: 26056140
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dominant-negative mutants of importin-beta block multiple pathways of import and export through the nuclear pore complex.
    Kutay U; Izaurralde E; Bischoff FR; Mattaj IW; Görlich D
    EMBO J; 1997 Mar; 16(6):1153-63. PubMed ID: 9135132
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ESCRTs breach the nuclear border.
    Webster BM; Lusk CP
    Nucleus; 2015; 6(3):197-202. PubMed ID: 25942571
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Karyopherins regulate nuclear pore complex barrier and transport function.
    Kapinos LE; Huang B; Rencurel C; Lim RYH
    J Cell Biol; 2017 Nov; 216(11):3609-3624. PubMed ID: 28864541
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Autonomy and robustness of translocation through the nuclear pore complex: a single-molecule study.
    Dange T; Grünwald D; Grünwald A; Peters R; Kubitscheck U
    J Cell Biol; 2008 Oct; 183(1):77-86. PubMed ID: 18824568
    [TBL] [Abstract][Full Text] [Related]  

  • 37. UNC-83 IS a KASH protein required for nuclear migration and is recruited to the outer nuclear membrane by a physical interaction with the SUN protein UNC-84.
    McGee MD; Rillo R; Anderson AS; Starr DA
    Mol Biol Cell; 2006 Apr; 17(4):1790-801. PubMed ID: 16481402
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recruitment of functionally distinct membrane proteins to chromatin mediates nuclear envelope formation in vivo.
    Anderson DJ; Vargas JD; Hsiao JP; Hetzer MW
    J Cell Biol; 2009 Jul; 186(2):183-91. PubMed ID: 19620630
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chm7 and Heh1 collaborate to link nuclear pore complex quality control with nuclear envelope sealing.
    Webster BM; Thaller DJ; Jäger J; Ochmann SE; Borah S; Lusk CP
    EMBO J; 2016 Nov; 35(22):2447-2467. PubMed ID: 27733427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rab6-mediated retrograde transport regulates inner nuclear membrane targeting of caveolin-2 in response to insulin.
    Jeong K; Kwon H; Lee J; Jang D; Hwang EM; Park JY; Pak Y
    Traffic; 2012 Sep; 13(9):1218-33. PubMed ID: 22607032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.