These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 26179958)

  • 1. Biodegradation, biocompatibility, and osteoconduction evaluation of collagen-nanohydroxyapatite cryogels for bone tissue regeneration.
    Salgado CL; Grenho L; Fernandes MH; Colaço BJ; Monteiro FJ
    J Biomed Mater Res A; 2016 Jan; 104(1):57-70. PubMed ID: 26179958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of collagen-nanohydroxyapatite biocomposite scaffolds by cryogelation method for bone tissue engineering applications.
    Rodrigues SC; Salgado CL; Sahu A; Garcia MP; Fernandes MH; Monteiro FJ
    J Biomed Mater Res A; 2013 Apr; 101(4):1080-94. PubMed ID: 23008173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone marrow mesenchymal stem cells, platelet-rich plasma and nanohydroxyapatite-type I collagen beads were integral parts of biomimetic bone substitutes for bone regeneration.
    Lin BN; Whu SW; Chen CH; Hsu FY; Chen JC; Liu HW; Chen CH; Liou HM
    J Tissue Eng Regen Med; 2013 Nov; 7(11):841-54. PubMed ID: 22744907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inorganic/organic biocomposite cryogels for regeneration of bony tissues.
    Mishra R; Kumar A
    J Biomater Sci Polym Ed; 2011; 22(16):2107-26. PubMed ID: 21067655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper-doped borosilicate bioactive glass scaffolds with improved angiogenic and osteogenic capacity for repairing osseous defects.
    Zhao S; Wang H; Zhang Y; Huang W; Rahaman MN; Liu Z; Wang D; Zhang C
    Acta Biomater; 2015 Mar; 14():185-96. PubMed ID: 25534470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrospun Yarn Reinforced NanoHA Composite Matrix as a Potential Bone Substitute for Enhanced Regeneration of Segmental Defects.
    Anitha A; Joseph J; Menon D; Nair SV; Nair MB
    Tissue Eng Part A; 2017 Apr; 23(7-8):345-358. PubMed ID: 28093043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restoration of critical-size defects in the rabbit mandible using porous nanohydroxyapatite-polyamide scaffolds.
    Guo J; Meng Z; Chen G; Xie D; Chen Y; Wang H; Tang W; Liu L; Jing W; Long J; Guo W; Tian W
    Tissue Eng Part A; 2012 Jun; 18(11-12):1239-52. PubMed ID: 22320360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocomposite cryogels as tissue-engineered biomaterials for regeneration of critical-sized cranial bone defects.
    Mishra R; Goel SK; Gupta KC; Kumar A
    Tissue Eng Part A; 2014 Feb; 20(3-4):751-62. PubMed ID: 24147880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced osteoinductivity and osteoconductivity through hydroxyapatite coating of silk-based tissue-engineered ligament scaffold.
    He P; Sahoo S; Ng KS; Chen K; Toh SL; Goh JC
    J Biomed Mater Res A; 2013 Feb; 101(2):555-66. PubMed ID: 22949167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High biocompatibility and improved osteogenic potential of novel Ca-P/titania composite scaffolds designed for regeneration of load-bearing segmental bone defects.
    Cunha C; Sprio S; Panseri S; Dapporto M; Marcacci M; Tampieri A
    J Biomed Mater Res A; 2013 Jun; 101(6):1612-9. PubMed ID: 23172612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells.
    Shalumon KT; Liao HT; Kuo CY; Wong CB; Li CJ; P A M; Chen JP
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109855. PubMed ID: 31500067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of bone grafts using cryopreserved mesenchymal stromal cells and macroporous collagen-nanohydroxyapatite cryogels.
    Rogulska OY; Trufanova NA; Petrenko YA; Repin NV; Grischuk VP; Ashukina NO; Bondarenko SY; Ivanov GV; Podorozhko EA; Lozinsky VI; Petrenko AY
    J Biomed Mater Res B Appl Biomater; 2022 Feb; 110(2):489-499. PubMed ID: 34387944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monolithic and assembled polymer-ceramic composites for bone regeneration.
    Nandakumar A; Cruz C; Mentink A; Tahmasebi Birgani Z; Moroni L; van Blitterswijk C; Habibovic P
    Acta Biomater; 2013 Mar; 9(3):5708-17. PubMed ID: 23142480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Injectable Chitin-Poly(ε-caprolactone)/Nanohydroxyapatite Composite Microgels Prepared by Simple Regeneration Technique for Bone Tissue Engineering.
    Arun Kumar R; Sivashanmugam A; Deepthi S; Iseki S; Chennazhi KP; Nair SV; Jayakumar R
    ACS Appl Mater Interfaces; 2015 May; 7(18):9399-409. PubMed ID: 25893690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.
    Kim JA; Lim J; Naren R; Yun HS; Park EK
    Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silk fibroin/nanohydroxyapatite hydrogels for promoted bioactivity and osteoblastic proliferation and differentiation of human bone marrow stromal cells.
    Ribeiro M; Fernandes MH; Beppu MM; Monteiro FJ; Ferraz MP
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():336-345. PubMed ID: 29752106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell-based bone tissue engineering.
    Ambre AH; Katti DR; Katti KS
    J Biomed Mater Res A; 2015 Jun; 103(6):2077-101. PubMed ID: 25331212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifunctional biomaterials from the sea: Assessing the effects of chitosan incorporation into collagen scaffolds on mechanical and biological functionality.
    Raftery RM; Woods B; Marques ALP; Moreira-Silva J; Silva TH; Cryan SA; Reis RL; O'Brien FJ
    Acta Biomater; 2016 Oct; 43():160-169. PubMed ID: 27402181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of laminated hydroxyapatite/gelatin nanocomposite scaffold structure on osteogenesis using unrestricted somatic stem cells in rat.
    Tavakol S; Azami M; Khoshzaban A; Ragerdi Kashani I; Tavakol B; Hoveizi E; Rezayat Sorkhabadi SM
    Cell Biol Int; 2013 Nov; 37(11):1181-9. PubMed ID: 23765607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering.
    Fernandez JM; Molinuevo MS; Cortizo MS; Cortizo AM
    J Tissue Eng Regen Med; 2011 Jun; 5(6):e126-35. PubMed ID: 21312338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.