These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 26180073)

  • 1. The vulnerability of species to range expansions by predators can be predicted using historical species associations and body size.
    Alofs KM; Jackson DA
    Proc Biol Sci; 2015 Aug; 282(1812):20151211. PubMed ID: 26180073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The abiotic and biotic factors limiting establishment of predatory fishes at their expanding northern range boundaries in Ontario, Canada.
    Alofs KM; Jackson DA
    Glob Chang Biol; 2015 Jun; 21(6):2227-37. PubMed ID: 25556555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trait-based diet selection: prey behaviour and morphology predict vulnerability to predation in reef fish communities.
    Green SJ; Côté IM
    J Anim Ecol; 2014 Nov; 83(6):1451-60. PubMed ID: 24861366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homogenization of freshwater lakes: Recent compositional shifts in fish communities are explained by gamefish movement and not climate change.
    Cazelles K; Bartley T; Guzzo MM; Brice MH; MacDougall AS; Bennett JR; Esch EH; Kadoya T; Kelly J; Matsuzaki SI; Nilsson KA; McCann KS
    Glob Chang Biol; 2019 Dec; 25(12):4222-4233. PubMed ID: 31502733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive evolution to novel predators facilitates the evolution of damselfly species range shifts.
    Siepielski AM; Beaulieu JM
    Evolution; 2017 Apr; 71(4):974-984. PubMed ID: 28094439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increases in disturbance and reductions in habitat size interact to suppress predator body size.
    Jellyman PG; McHugh PA; McIntosh AR
    Glob Chang Biol; 2014 May; 20(5):1550-8. PubMed ID: 24133009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From projected species distribution to food-web structure under climate change.
    Albouy C; Velez L; Coll M; Colloca F; Le Loc'h F; Mouillot D; Gravel D
    Glob Chang Biol; 2014 Mar; 20(3):730-41. PubMed ID: 24214576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tropical fish community does not recover 45 years after predator introduction.
    Sharpe DM; De León LF; González R; Torchin ME
    Ecology; 2017 Feb; 98(2):412-424. PubMed ID: 27861787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size structuring and allometric scaling relationships in coral reef fishes.
    Dunic JC; Baum JK
    J Anim Ecol; 2017 May; 86(3):577-589. PubMed ID: 28099761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of drought and pluvial periods on fish and zooplankton communities in prairie lakes: systematic and asystematic responses.
    Starks E; Cooper R; Leavitt PR; Wissel B
    Glob Chang Biol; 2014 Apr; 20(4):1032-42. PubMed ID: 23960001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate change vulnerability of native and alien freshwater fishes of California: a systematic assessment approach.
    Moyle PB; Kiernan JD; Crain PK; Quiñones RM
    PLoS One; 2013; 8(5):e63883. PubMed ID: 23717503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The future distribution of river fish: The complex interplay of climate and land use changes, species dispersal and movement barriers.
    Radinger J; Essl F; Hölker F; Horký P; Slavík O; Wolter C
    Glob Chang Biol; 2017 Nov; 23(11):4970-4986. PubMed ID: 28500795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disentangling the effects of a century of eutrophication and climate warming on freshwater lake fish assemblages.
    Jacobson PC; Hansen GJA; Bethke BJ; Cross TK
    PLoS One; 2017; 12(8):e0182667. PubMed ID: 28777816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term changes in the diet of Gymnogobius isaza from Lake Biwa, Japan: effects of body size and environmental prey availability.
    Briones JC; Tsai CH; Nakazawa T; Sakai Y; Papa RD; Hsieh CH; Okuda N
    PLoS One; 2012; 7(12):e53167. PubMed ID: 23285262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pattern and process in the ecological biogeography of European freshwater fish.
    Griffiths D
    J Anim Ecol; 2006 May; 75(3):734-51. PubMed ID: 16689956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the vulnerability of freshwater fishes to climate change in Newfoundland and Labrador.
    Olusanya HO; van Zyll de Jong M
    PLoS One; 2018; 13(12):e0208182. PubMed ID: 30507972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic habitat suitability modelling reveals rapid poleward distribution shift in a mobile apex predator.
    Hill NJ; Tobin AJ; Reside AE; Pepperell JG; Bridge TC
    Glob Chang Biol; 2016 Mar; 22(3):1086-96. PubMed ID: 26464050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mercury Temporal Trends in Top Predator Fish of the Laurentian Great Lakes from 2004 to 2015: Are Concentrations Still Decreasing?
    Zhou C; Cohen MD; Crimmins BA; Zhou H; Johnson TA; Hopke PK; Holsen TM
    Environ Sci Technol; 2017 Jul; 51(13):7386-7394. PubMed ID: 28578575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot.
    Sunday JM; Pecl GT; Frusher S; Hobday AJ; Hill N; Holbrook NJ; Edgar GJ; Stuart-Smith R; Barrett N; Wernberg T; Watson RA; Smale DA; Fulton EA; Slawinski D; Feng M; Radford BT; Thompson PA; Bates AE
    Ecol Lett; 2015 Sep; 18(9):944-53. PubMed ID: 26189556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in vertical and horizontal diversities mediated by the size structure of introduced fish collectively shape food-web stability.
    Vagnon C; Pomeranz J; Loheac B; Vallat M; Guillard J; Raymond JC; Sentis A; Frossard V
    Ecol Lett; 2023 Oct; 26(10):1752-1764. PubMed ID: 37492003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.