BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

575 related articles for article (PubMed ID: 26180081)

  • 1. Metabolic reprogramming in glioblastoma: the influence of cancer metabolism on epigenetics and unanswered questions.
    Agnihotri S; Zadeh G
    Neuro Oncol; 2016 Feb; 18(2):160-72. PubMed ID: 26180081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Anti-Warburg Effect Elicited by the cAMP-PGC1α Pathway Drives Differentiation of Glioblastoma Cells into Astrocytes.
    Xing F; Luan Y; Cai J; Wu S; Mai J; Gu J; Zhang H; Li K; Lin Y; Xiao X; Liang J; Li Y; Chen W; Tan Y; Sheng L; Lu B; Lu W; Gao M; Qiu P; Su X; Yin W; Hu J; Chen Z; Sai K; Wang J; Chen F; Chen Y; Zhu S; Liu D; Cheng S; Xie Z; Zhu W; Yan G
    Cell Rep; 2017 Jan; 18(2):468-481. PubMed ID: 28076790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting metabolic remodeling in glioblastoma multiforme.
    Wolf A; Agnihotri S; Guha A
    Oncotarget; 2010 Nov; 1(7):552-62. PubMed ID: 21317451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KPNA2 promotes metabolic reprogramming in glioblastomas by regulation of c-myc.
    Li J; Liu Q; Liu Z; Xia Q; Zhang Z; Zhang R; Gao T; Gu G; Wang Y; Wang D; Chen X; Yang Y; He D; Xin T
    J Exp Clin Cancer Res; 2018 Aug; 37(1):194. PubMed ID: 30115078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reprogramming cancer cells to pluripotency: an experimental tool for exploring cancer epigenetics.
    Stricker S; Pollard S
    Epigenetics; 2014 Jun; 9(6):798-802. PubMed ID: 24686321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. mTORC2 and Metabolic Reprogramming in GBM: at the Interface of Genetics and Environment.
    Masui K; Cavenee WK; Mischel PS
    Brain Pathol; 2015 Nov; 25(6):755-9. PubMed ID: 26526943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cancer stem cell molecular reprogramming of the Warburg effect in glioblastomas: a new target gleaned from an old concept.
    Yuen CA; Asuthkar S; Guda MR; Tsung AJ; Velpula KK
    CNS Oncol; 2016; 5(2):101-8. PubMed ID: 26997129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pro-tumorigenic effects of metabolic alterations in glioblastoma including brain tumor initiating cells.
    Landis CJ; Tran AN; Scott SE; Griguer C; Hjelmeland AB
    Biochim Biophys Acta Rev Cancer; 2018 Apr; 1869(2):175-188. PubMed ID: 29378228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Strategies to Discover Effective Drug Targets in Metabolic and Immune Therapy for Glioblastoma.
    Wang G; Fu XL; Wang JJ; Guan R; Tang XJ
    Curr Cancer Drug Targets; 2017; 17(1):17-39. PubMed ID: 27562399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cysteine catabolism: a novel metabolic pathway contributing to glioblastoma growth.
    Prabhu A; Sarcar B; Kahali S; Yuan Z; Johnson JJ; Adam KP; Kensicki E; Chinnaiyan P
    Cancer Res; 2014 Feb; 74(3):787-96. PubMed ID: 24351290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-capacity glycolytic and mitochondrial oxidative metabolisms mediate the growth ability of glioblastoma.
    Kim J; Han J; Jang Y; Kim SJ; Lee MJ; Ryu MJ; Kweon GR; Heo JY
    Int J Oncol; 2015 Sep; 47(3):1009-16. PubMed ID: 26202438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond the Warburg Effect: Oxidative and Glycolytic Phenotypes Coexist within the Metabolic Heterogeneity of Glioblastoma.
    Duraj T; García-Romero N; Carrión-Navarro J; Madurga R; Mendivil AO; Prat-Acin R; Garcia-Cañamaque L; Ayuso-Sacido A
    Cells; 2021 Jan; 10(2):. PubMed ID: 33498369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overcoming therapeutic resistance in glioblastoma: the way forward.
    Osuka S; Van Meir EG
    J Clin Invest; 2017 Feb; 127(2):415-426. PubMed ID: 28145904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic reprogramming: the emerging concept and associated therapeutic strategies.
    Yoshida GJ
    J Exp Clin Cancer Res; 2015 Oct; 34():111. PubMed ID: 26445347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Warburg effect then and now: from cancer to inflammatory diseases.
    Palsson-McDermott EM; O'Neill LA
    Bioessays; 2013 Nov; 35(11):965-73. PubMed ID: 24115022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The DNA methylome of glioblastoma multiforme.
    Martinez R; Esteller M
    Neurobiol Dis; 2010 Jul; 39(1):40-6. PubMed ID: 20064612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IDH3α regulates one-carbon metabolism in glioblastoma.
    May JL; Kouri FM; Hurley LA; Liu J; Tommasini-Ghelfi S; Ji Y; Gao P; Calvert AE; Lee A; Chandel NS; Davuluri RV; Horbinski CM; Locasale JW; Stegh AH
    Sci Adv; 2019 Jan; 5(1):eaat0456. PubMed ID: 30613765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The epigenetics of brain tumors.
    Dubuc AM; Mack S; Unterberger A; Northcott PA; Taylor MD
    Methods Mol Biol; 2012; 863():139-53. PubMed ID: 22359291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infiltrative and drug-resistant slow-cycling cells support metabolic heterogeneity in glioblastoma.
    Hoang-Minh LB; Siebzehnrubl FA; Yang C; Suzuki-Hatano S; Dajac K; Loche T; Andrews N; Schmoll Massari M; Patel J; Amin K; Vuong A; Jimenez-Pascual A; Kubilis P; Garrett TJ; Moneypenny C; Pacak CA; Huang J; Sayour EJ; Mitchell DA; Sarkisian MR; Reynolds BA; Deleyrolle LP
    EMBO J; 2018 Dec; 37(23):. PubMed ID: 30322894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PINK1 Is a Negative Regulator of Growth and the Warburg Effect in Glioblastoma.
    Agnihotri S; Golbourn B; Huang X; Remke M; Younger S; Cairns RA; Chalil A; Smith CA; Krumholtz SL; Mackenzie D; Rakopoulos P; Ramaswamy V; Taccone MS; Mischel PS; Fuller GN; Hawkins C; Stanford WL; Taylor MD; Zadeh G; Rutka JT
    Cancer Res; 2016 Aug; 76(16):4708-19. PubMed ID: 27325644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.