These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

593 related articles for article (PubMed ID: 26180081)

  • 1. Metabolic reprogramming in glioblastoma: the influence of cancer metabolism on epigenetics and unanswered questions.
    Agnihotri S; Zadeh G
    Neuro Oncol; 2016 Feb; 18(2):160-72. PubMed ID: 26180081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic Reprogramming in Glioblastoma Multiforme: A Review of Pathways and Therapeutic Targets.
    Cortes Ballen AI; Amosu M; Ravinder S; Chan J; Derin E; Slika H; Tyler B
    Cells; 2024 Sep; 13(18):. PubMed ID: 39329757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Anti-Warburg Effect Elicited by the cAMP-PGC1α Pathway Drives Differentiation of Glioblastoma Cells into Astrocytes.
    Xing F; Luan Y; Cai J; Wu S; Mai J; Gu J; Zhang H; Li K; Lin Y; Xiao X; Liang J; Li Y; Chen W; Tan Y; Sheng L; Lu B; Lu W; Gao M; Qiu P; Su X; Yin W; Hu J; Chen Z; Sai K; Wang J; Chen F; Chen Y; Zhu S; Liu D; Cheng S; Xie Z; Zhu W; Yan G
    Cell Rep; 2017 Jan; 18(2):468-481. PubMed ID: 28076790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting metabolic remodeling in glioblastoma multiforme.
    Wolf A; Agnihotri S; Guha A
    Oncotarget; 2010 Nov; 1(7):552-62. PubMed ID: 21317451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KPNA2 promotes metabolic reprogramming in glioblastomas by regulation of c-myc.
    Li J; Liu Q; Liu Z; Xia Q; Zhang Z; Zhang R; Gao T; Gu G; Wang Y; Wang D; Chen X; Yang Y; He D; Xin T
    J Exp Clin Cancer Res; 2018 Aug; 37(1):194. PubMed ID: 30115078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reprogramming cancer cells to pluripotency: an experimental tool for exploring cancer epigenetics.
    Stricker S; Pollard S
    Epigenetics; 2014 Jun; 9(6):798-802. PubMed ID: 24686321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. mTORC2 and Metabolic Reprogramming in GBM: at the Interface of Genetics and Environment.
    Masui K; Cavenee WK; Mischel PS
    Brain Pathol; 2015 Nov; 25(6):755-9. PubMed ID: 26526943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cancer stem cell molecular reprogramming of the Warburg effect in glioblastomas: a new target gleaned from an old concept.
    Yuen CA; Asuthkar S; Guda MR; Tsung AJ; Velpula KK
    CNS Oncol; 2016; 5(2):101-8. PubMed ID: 26997129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pro-tumorigenic effects of metabolic alterations in glioblastoma including brain tumor initiating cells.
    Landis CJ; Tran AN; Scott SE; Griguer C; Hjelmeland AB
    Biochim Biophys Acta Rev Cancer; 2018 Apr; 1869(2):175-188. PubMed ID: 29378228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Strategies to Discover Effective Drug Targets in Metabolic and Immune Therapy for Glioblastoma.
    Wang G; Fu XL; Wang JJ; Guan R; Tang XJ
    Curr Cancer Drug Targets; 2017; 17(1):17-39. PubMed ID: 27562399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cysteine catabolism: a novel metabolic pathway contributing to glioblastoma growth.
    Prabhu A; Sarcar B; Kahali S; Yuan Z; Johnson JJ; Adam KP; Kensicki E; Chinnaiyan P
    Cancer Res; 2014 Feb; 74(3):787-96. PubMed ID: 24351290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-capacity glycolytic and mitochondrial oxidative metabolisms mediate the growth ability of glioblastoma.
    Kim J; Han J; Jang Y; Kim SJ; Lee MJ; Ryu MJ; Kweon GR; Heo JY
    Int J Oncol; 2015 Sep; 47(3):1009-16. PubMed ID: 26202438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beyond the Warburg Effect: Oxidative and Glycolytic Phenotypes Coexist within the Metabolic Heterogeneity of Glioblastoma.
    Duraj T; García-Romero N; Carrión-Navarro J; Madurga R; Mendivil AO; Prat-Acin R; Garcia-Cañamaque L; Ayuso-Sacido A
    Cells; 2021 Jan; 10(2):. PubMed ID: 33498369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overcoming therapeutic resistance in glioblastoma: the way forward.
    Osuka S; Van Meir EG
    J Clin Invest; 2017 Feb; 127(2):415-426. PubMed ID: 28145904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic dysregulation of tricarboxylic acid cycle and oxidative phosphorylation in glioblastoma.
    Trejo-Solís C; Serrano-García N; Castillo-Rodríguez RA; Robledo-Cadena DX; Jimenez-Farfan D; Marín-Hernández Á; Silva-Adaya D; Rodríguez-Pérez CE; Gallardo-Pérez JC
    Rev Neurosci; 2024 Oct; 35(7):813-838. PubMed ID: 38841811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic reprogramming: the emerging concept and associated therapeutic strategies.
    Yoshida GJ
    J Exp Clin Cancer Res; 2015 Oct; 34():111. PubMed ID: 26445347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Warburg effect then and now: from cancer to inflammatory diseases.
    Palsson-McDermott EM; O'Neill LA
    Bioessays; 2013 Nov; 35(11):965-73. PubMed ID: 24115022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The DNA methylome of glioblastoma multiforme.
    Martinez R; Esteller M
    Neurobiol Dis; 2010 Jul; 39(1):40-6. PubMed ID: 20064612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative magnetic field exposure suppresses tumor growth via metabolic reprogramming.
    Akimoto T; Islam MR; Nagasako A; Kishi K; Nakakaji R; Ohtake M; Hasumi H; Yamaguchi T; Yamada S; Yamamoto T; Ishikawa Y; Umemura M
    Cancer Sci; 2024 Aug; 115(8):2686-2700. PubMed ID: 38877783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IDH3α regulates one-carbon metabolism in glioblastoma.
    May JL; Kouri FM; Hurley LA; Liu J; Tommasini-Ghelfi S; Ji Y; Gao P; Calvert AE; Lee A; Chandel NS; Davuluri RV; Horbinski CM; Locasale JW; Stegh AH
    Sci Adv; 2019 Jan; 5(1):eaat0456. PubMed ID: 30613765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.