BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

679 related articles for article (PubMed ID: 26180189)

  • 1. Constructing Precisely Computing Networks with Biophysical Spiking Neurons.
    Schwemmer MA; Fairhall AL; Denéve S; Shea-Brown ET
    J Neurosci; 2015 Jul; 35(28):10112-34. PubMed ID: 26180189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons.
    Jackson BS
    Neural Comput; 2004 Oct; 16(10):2125-95. PubMed ID: 15333210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Approximating Nonlinear Functions With Latent Boundaries in Low-Rank Excitatory-Inhibitory Spiking Networks.
    Podlaski WF; Machens CK
    Neural Comput; 2024 Apr; 36(5):803-857. PubMed ID: 38658028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust computation with rhythmic spike patterns.
    Frady EP; Sommer FT
    Proc Natl Acad Sci U S A; 2019 Sep; 116(36):18050-18059. PubMed ID: 31431524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Markovian event-based framework for stochastic spiking neural networks.
    Touboul JD; Faugeras OD
    J Comput Neurosci; 2011 Nov; 31(3):485-507. PubMed ID: 21499739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computing with networks of spiking neurons on a biophysically motivated floating-gate based neuromorphic integrated circuit.
    Brink S; Nease S; Hasler P
    Neural Netw; 2013 Sep; 45():39-49. PubMed ID: 23541925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning in neural networks by reinforcement of irregular spiking.
    Xie X; Seung HS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 1):041909. PubMed ID: 15169045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient computation based on stochastic spikes.
    Ernst U; Rotermund D; Pawelzik K
    Neural Comput; 2007 May; 19(5):1313-43. PubMed ID: 17381268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of the exponential integrate-and-fire model with slow currents and adaptation.
    Barranca VJ; Johnson DC; Moyher JL; Sauppe JP; Shkarayev MS; Kovačič G; Cai D
    J Comput Neurosci; 2014 Aug; 37(1):161-80. PubMed ID: 24443127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How well do mean field theories of spiking quadratic-integrate-and-fire networks work in realistic parameter regimes?
    Grabska-Barwińska A; Latham PE
    J Comput Neurosci; 2014 Jun; 36(3):469-81. PubMed ID: 24091644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variability v.s. synchronicity of neuronal activity in local cortical network models with different wiring topologies.
    Kitano K; Fukai T
    J Comput Neurosci; 2007 Oct; 23(2):237-50. PubMed ID: 17415629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons: Comparison and implementation.
    Augustin M; Ladenbauer J; Baumann F; Obermayer K
    PLoS Comput Biol; 2017 Jun; 13(6):e1005545. PubMed ID: 28644841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noisy Juxtacellular Stimulation In Vivo Leads to Reliable Spiking and Reveals High-Frequency Coding in Single Neurons.
    Doose J; Doron G; Brecht M; Lindner B
    J Neurosci; 2016 Oct; 36(43):11120-11132. PubMed ID: 27798191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of adaptation currents on synchronization of coupled exponential integrate-and-fire neurons.
    Ladenbauer J; Augustin M; Shiau L; Obermayer K
    PLoS Comput Biol; 2012; 8(4):e1002478. PubMed ID: 22511861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the dynamics of neural interactions between current-based and conductance-based integrate-and-fire recurrent networks.
    Cavallari S; Panzeri S; Mazzoni A
    Front Neural Circuits; 2014; 8():12. PubMed ID: 24634645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Information recall using relative spike timing in a spiking neural network.
    Sterne P
    Neural Comput; 2012 Aug; 24(8):2053-77. PubMed ID: 22509970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase response curve analysis of a full morphological globus pallidus neuron model reveals distinct perisomatic and dendritic modes of synaptic integration.
    Schultheiss NW; Edgerton JR; Jaeger D
    J Neurosci; 2010 Feb; 30(7):2767-82. PubMed ID: 20164360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poisson balanced spiking networks.
    Rullán Buxó CE; Pillow JW
    PLoS Comput Biol; 2020 Nov; 16(11):e1008261. PubMed ID: 33216741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning precisely timed spikes.
    Memmesheimer RM; Rubin R; Olveczky BP; Sompolinsky H
    Neuron; 2014 May; 82(4):925-38. PubMed ID: 24768299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting operational regimes of interest in recurrent neural networks.
    Ekelmans P; Kraynyukova N; Tchumatchenko T
    PLoS Comput Biol; 2023 May; 19(5):e1011097. PubMed ID: 37186668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.