BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26180238)

  • 1. Predicted effects of nitric oxide and superoxide on the vasoactivity of the afferent arteriole.
    Layton AT; Edwards A
    Am J Physiol Renal Physiol; 2015 Oct; 309(8):F708-19. PubMed ID: 26180238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superoxide inhibits neuronal nitric oxide synthase influences on afferent arterioles in spontaneously hypertensive rats.
    Ichihara A; Hayashi M; Hirota N; Saruta T
    Hypertension; 2001 Feb; 37(2 Pt 2):630-4. PubMed ID: 11230347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free radical activity depends on underlying vasoconstrictors in renal microcirculation.
    Ozawa Y; Hayashi K; Wakino S; Kanda T; Homma K; Takamatsu I; Tatematsu S; Yoshioka K; Saruta T
    Clin Exp Hypertens; 2004 Apr; 26(3):219-29. PubMed ID: 15132300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactive effects of superoxide anion and nitric oxide on blood pressure and renal hemodynamics in transgenic rats with inducible malignant hypertension.
    Patterson ME; Mouton CR; Mullins JJ; Mitchell KD
    Am J Physiol Renal Physiol; 2005 Oct; 289(4):F754-9. PubMed ID: 15900020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myoglobin facilitates angiotensin II-induced constriction of renal afferent arterioles.
    Liu ZZ; Mathia S; Pahlitzsch T; Wennysia IC; Persson PB; Lai EY; Högner A; Xu MZ; Schubert R; Rosenberger C; Patzak A
    Am J Physiol Renal Physiol; 2017 May; 312(5):F908-F916. PubMed ID: 28052871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superoxide enhances tubuloglomerular feedback by constricting the afferent arteriole.
    Liu R; Ren Y; Garvin JL; Carretero OA
    Kidney Int; 2004 Jul; 66(1):268-74. PubMed ID: 15200433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superoxide modulates myogenic contractions of mouse afferent arterioles.
    Lai EY; Wellstein A; Welch WJ; Wilcox CS
    Hypertension; 2011 Oct; 58(4):650-6. PubMed ID: 21859962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced myogenic response in the afferent arteriole of spontaneously hypertensive rats.
    Ren Y; D'Ambrosio MA; Liu R; Pagano PJ; Garvin JL; Carretero OA
    Am J Physiol Heart Circ Physiol; 2010 Jun; 298(6):H1769-75. PubMed ID: 20363886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superoxide anion curbs nitric oxide modulation of afferent arteriolar ANG II responsiveness in diabetes mellitus.
    Schoonmaker GC; Fallet RW; Carmines PK
    Am J Physiol Renal Physiol; 2000 Feb; 278(2):F302-9. PubMed ID: 10662734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism by which superoxide potentiates tubuloglomerular feedback.
    Ren Y; Carretero OA; Garvin JL
    Hypertension; 2002 Feb; 39(2 Pt 2):624-8. PubMed ID: 11882620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superoxide enhances Ca2+ entry through L-type channels in the renal afferent arteriole.
    Vogel PA; Yang X; Moss NG; Arendshorst WJ
    Hypertension; 2015 Aug; 66(2):374-81. PubMed ID: 26034201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NO-independent mechanism mediates tempol-induced renal vasodilation in SHR.
    de Richelieu LT; Sorensen CM; Holstein-Rathlou NH; Salomonsson M
    Am J Physiol Renal Physiol; 2005 Dec; 289(6):F1227-34. PubMed ID: 16033921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iodinated contrast media differentially affect afferent and efferent arteriolar tone and reactivity in mice: a possible explanation for reduced glomerular filtration rate.
    Liu ZZ; Viegas VU; Perlewitz A; Lai EY; Persson PB; Patzak A; Sendeski MM
    Radiology; 2012 Dec; 265(3):762-71. PubMed ID: 23023964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular mechanisms underlying nitric oxide-induced vasodilation of descending vasa recta.
    Edwards A; Cao C; Pallone TL
    Am J Physiol Renal Physiol; 2011 Feb; 300(2):F441-56. PubMed ID: 21084408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic deficit in nitric oxide elicits oxidative stress and augments T-type calcium-channel contribution to vascular tone of rodent arteries and arterioles.
    Howitt L; Kuo IY; Ellis A; Chaston DJ; Shin HS; Hansen PB; Hill CE
    Cardiovasc Res; 2013 Jun; 98(3):449-57. PubMed ID: 23436820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The SOD mimetic tempol restores vasodilation in afferent arterioles of experimental diabetes.
    Schnackenberg CG; Wilcox CS
    Kidney Int; 2001 May; 59(5):1859-64. PubMed ID: 11318957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactive nitric oxide-angiotensin II influences on renal microcirculation in angiotensin II-induced hypertension.
    Ichihara A; Imig JD; Inscho EW; Navar LG
    Hypertension; 1998 Jun; 31(6):1255-60. PubMed ID: 9622138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-dependent transition from H(2)O(2)-extracellular signal-regulated kinase- to O(2)-nitric oxide-dependent mechanisms in the stimulatory effect of leptin on renal Na+/K+/-ATPase in the rat.
    Marciniak A; Borkowska E; Kedra A; Rychlik M; Beltowski J
    Clin Exp Pharmacol Physiol; 2006 Dec; 33(12):1216-24. PubMed ID: 17184504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction between nitric oxide and renal myogenic autoregulation in normotensive and hypertensive rats.
    Wang X; Cupples WA
    Can J Physiol Pharmacol; 2001 Mar; 79(3):238-45. PubMed ID: 11294600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced superoxide activity modulates renal function in NO-deficient hypertensive rats.
    Kopkan L; Majid DS
    Hypertension; 2006 Mar; 47(3):568-72. PubMed ID: 16401762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.