BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 26180574)

  • 1. Microfluidic based high throughput synthesis of lipid-polymer hybrid nanoparticles with tunable diameters.
    Feng Q; Zhang L; Liu C; Li X; Hu G; Sun J; Jiang X
    Biomicrofluidics; 2015 Sep; 9(5):052604. PubMed ID: 26180574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous synthesis of drug-loaded nanoparticles using microchannel emulsification and numerical modeling: effect of passive mixing.
    Ortiz de Solorzano I; Uson L; Larrea A; Miana M; Sebastian V; Arruebo M
    Int J Nanomedicine; 2016; 11():3397-416. PubMed ID: 27524896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review.
    Hadinoto K; Sundaresan A; Cheow WS
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):427-43. PubMed ID: 23872180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Assembled Core-Shell-Type Lipid-Polymer Hybrid Nanoparticles: Intracellular Trafficking and Relevance for Oral Absorption.
    Li Q; Xia D; Tao J; Shen A; He Y; Gan Y; Wang C
    J Pharm Sci; 2017 Oct; 106(10):3120-3130. PubMed ID: 28559042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering the lipid layer of lipid-PLGA hybrid nanoparticles for enhanced in vitro cellular uptake and improved stability.
    Hu Y; Hoerle R; Ehrich M; Zhang C
    Acta Biomater; 2015 Dec; 28():149-159. PubMed ID: 26428192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of size-tunable sub-200 nm PLGA-based nanoparticles with a wide size range using a microfluidic platform.
    Bao Y; Maeki M; Ishida A; Tani H; Tokeshi M
    PLoS One; 2022; 17(8):e0271050. PubMed ID: 35925917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing.
    Valencia PM; Basto PA; Zhang L; Rhee M; Langer R; Farokhzad OC; Karnik R
    ACS Nano; 2010 Mar; 4(3):1671-9. PubMed ID: 20166699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-step flow synthesis of size-controlled polymer nanogels in a fluorocarbon microfluidic chip.
    Montalbo RCK; Wu MJ; Tu HL
    RSC Adv; 2024 Apr; 14(16):11258-11265. PubMed ID: 38590347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in Hybrid Vesicular-based Drug Delivery Systems: Improved Biocompatibility, Targeting, Therapeutic Efficacy and Pharmacokinetics of Anticancer Drugs.
    Setia A; Sahu RK; Ray S; Widyowati R; Ekasari W; Saraf S
    Curr Drug Metab; 2022; 23(9):757-780. PubMed ID: 35761494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic platform for controlled synthesis of polymeric nanoparticles.
    Karnik R; Gu F; Basto P; Cannizzaro C; Dean L; Kyei-Manu W; Langer R; Farokhzad OC
    Nano Lett; 2008 Sep; 8(9):2906-12. PubMed ID: 18656990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Sonication To Assemble Exosome Membrane-Coated Nanoparticles for Immune Evasion-Mediated Targeting.
    Liu C; Zhang W; Li Y; Chang J; Tian F; Zhao F; Ma Y; Sun J
    Nano Lett; 2019 Nov; 19(11):7836-7844. PubMed ID: 31597431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic-Based Holonomic Constraints of siRNA in the Kernel of Lipid/Polymer Hybrid Nanoassemblies for Improving Stable and Safe In Vivo Delivery.
    Wei W; Sun J; Guo XY; Chen X; Wang R; Qiu C; Zhang HT; Pang WH; Wang JC; Zhang Q
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):14839-14854. PubMed ID: 32182035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile Layer-by-Layer Self-Assembly toward Enantiomeric Poly(lactide) Stereocomplex Coated Magnetite Nanocarrier for Highly Tunable Drug Deliveries.
    Li Z; Yuan D; Jin G; Tan BH; He C
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1842-53. PubMed ID: 26717323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Facile Way to Increase the Cellular Uptake Efficiency of Hybrid Nanoparticles.
    Yang Y; Meng Y; Zhang E; Ding J
    J Nanosci Nanotechnol; 2018 Jul; 18(7):4559-4564. PubMed ID: 29442632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Core-shell type lipid/rPAA-Chol polymer hybrid nanoparticles for in vivo siRNA delivery.
    Gao LY; Liu XY; Chen CJ; Wang JC; Feng Q; Yu MZ; Ma XF; Pei XW; Niu YJ; Qiu C; Pang WH; Zhang Q
    Biomaterials; 2014 Feb; 35(6):2066-78. PubMed ID: 24315577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidics for producing poly (lactic-co-glycolic acid)-based pharmaceutical nanoparticles.
    Li X; Jiang X
    Adv Drug Deliv Rev; 2018 Mar; 128():101-114. PubMed ID: 29277543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy.
    Valencia PM; Pridgen EM; Rhee M; Langer R; Farokhzad OC; Karnik R
    ACS Nano; 2013 Dec; 7(12):10671-80. PubMed ID: 24215426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted delivery of 10-hydroxycamptothecin to human breast cancers by cyclic RGD-modified lipid-polymer hybrid nanoparticles.
    Yang Z; Luo X; Zhang X; Liu J; Jiang Q
    Biomed Mater; 2013 Apr; 8(2):025012. PubMed ID: 23507576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Curcumin-Loaded Hybrid Nanoparticles: Microchannel-Based Preparation and Antitumor Activity in a Mouse Model.
    Hong W; Gao Y; Lou B; Ying S; Wu W; Ji X; Yu N; Jiao Y; Wang H; Zhou X; Li A; Guo F; Yang G
    Int J Nanomedicine; 2021; 16():4147-4159. PubMed ID: 34168445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro performance of lipid-PLGA hybrid nanoparticles as an antigen delivery system: lipid composition matters.
    Hu Y; Ehrich M; Fuhrman K; Zhang C
    Nanoscale Res Lett; 2014; 9(1):434. PubMed ID: 25232295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.