These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 26181051)

  • 1. Quantum Confinement Regimes in CdTe Nanocrystals Probed by Single Dot Spectroscopy: From Strong Confinement to the Bulk Limit.
    Tilchin J; Rabouw FT; Isarov M; Vaxenburg R; Van Dijk-Moes RJ; Lifshitz E; Vanmaekelbergh D
    ACS Nano; 2015 Aug; 9(8):7840-5. PubMed ID: 26181051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-exciton optical gain in semiconductor nanocrystals.
    Klimov VI; Ivanov SA; Nanda J; Achermann M; Bezel I; McGuire JA; Piryatinski A
    Nature; 2007 May; 447(7143):441-6. PubMed ID: 17522678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exciton multiplication from first principles.
    Jaeger HM; Hyeon-Deuk K; Prezhdo OV
    Acc Chem Res; 2013 Jun; 46(6):1280-9. PubMed ID: 23459543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: implications for lasing and solar energy conversion.
    Klimov VI
    J Phys Chem B; 2006 Aug; 110(34):16827-45. PubMed ID: 16927970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excitons and biexcitons in InGaN quantum dot like localization centers.
    Amloy S; Karlsson KF; Eriksson MO; Palisaitis J; Persson PO; Chen YT; Chen KH; Hsu HC; Hsiao CL; Chen LC; Holtz PO
    Nanotechnology; 2014 Dec; 25(49):495702. PubMed ID: 25410551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exciton-exciton correlations revealed by two-quantum, two-dimensional fourier transform optical spectroscopy.
    Stone KW; Turner DB; Gundogdu K; Cundiff ST; Nelson KA
    Acc Chem Res; 2009 Sep; 42(9):1452-61. PubMed ID: 19691277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deciphering exciton-generation processes in quantum-dot electroluminescence.
    Deng Y; Lin X; Fang W; Di D; Wang L; Friend RH; Peng X; Jin Y
    Nat Commun; 2020 May; 11(1):2309. PubMed ID: 32385262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loosening quantum confinement: observation of real conductivity caused by hole polarons in semiconductor nanocrystals smaller than the Bohr radius.
    Ulbricht R; Pijpers JJ; Groeneveld E; Koole R; Donega Cde M; Vanmaekelbergh D; Delerue C; Allan G; Bonn M
    Nano Lett; 2012 Sep; 12(9):4937-42. PubMed ID: 22881597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resolving the Controversy in Biexciton Binding Energy of Cesium Lead Halide Perovskite Nanocrystals through Heralded Single-Particle Spectroscopy.
    Lubin G; Yaniv G; Kazes M; Ulku AC; Antolovic IM; Burri S; Bruschini C; Charbon E; Yallapragada VJ; Oron D
    ACS Nano; 2021 Dec; 15(12):19581-19587. PubMed ID: 34846120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hot Biexciton Effect on Optical Gain in CsPbI
    Yumoto G; Tahara H; Kawawaki T; Saruyama M; Sato R; Teranishi T; Kanemitsu Y
    J Phys Chem Lett; 2018 May; 9(9):2222-2228. PubMed ID: 29644864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exciton polarizability in semiconductor nanocrystals.
    Wang F; Shan J; Islam MA; Herman IP; Bonn M; Heinz TF
    Nat Mater; 2006 Nov; 5(11):861-4. PubMed ID: 17028577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stark effect of interactive electron-hole pairs in spherical semiconductor quantum dots.
    Billaud B; Picco M; Truong TT
    J Phys Condens Matter; 2009 Sep; 21(39):395302. PubMed ID: 21832385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A tight-binding model for illustrating exciton confinement in semiconductor nanocrystals.
    Hens Z; Delerue CD
    J Chem Phys; 2024 Mar; 160(11):. PubMed ID: 38506285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced multiple exciton dissociation from CdSe quantum rods: the effect of nanocrystal shape.
    Zhu H; Lian T
    J Am Chem Soc; 2012 Jul; 134(27):11289-97. PubMed ID: 22702343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of quantum size confinement on the optical properties of PbSe nanocrystals under exposure to heat and hydrostatic pressure.
    Pedrueza E; Segura A; Abargues R; Bailach JB; Chervin JC; Martínez-Pastor JP
    Nanotechnology; 2013 May; 24(20):205701. PubMed ID: 23598706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of quantum and dielectric confinement on the exciton-exciton interaction energy in type II core/shell semiconductor nanocrystals.
    Piryatinski A; Ivanov SA; Tretiak S; Klimov VI
    Nano Lett; 2007 Jan; 7(1):108-15. PubMed ID: 17212448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.