These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 2618132)

  • 21. Endothelium-derived relaxing factor is a selective relaxant of vascular smooth muscle.
    Shikano K; Berkowitz BA
    J Pharmacol Exp Ther; 1987 Oct; 243(1):55-60. PubMed ID: 3499504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. L-type Ca2+ channels are not involved in coronary endothelial Ca2+ influx mechanism responsible for endothelium-dependent relaxation.
    Uchida H; Tanaka Y; Ishii K; Nakayama K
    Res Commun Mol Pathol Pharmacol; 1999; 104(2):127-44. PubMed ID: 10634306
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of gender and estrogen receptors in the rat aorta endothelium-dependent relaxation to red wine polyphenols.
    Kane MO; Anselm E; Rattmann YD; Auger C; Schini-Kerth VB
    Vascul Pharmacol; 2009; 51(2-3):140-6. PubMed ID: 19520189
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chylomicron-remnant-like particles inhibit the basal nitric oxide pathway in porcine coronary artery and aortic endothelial cells.
    Goulter AB; Avella M; Botham KM; Elliott J
    Clin Sci (Lond); 2003 Sep; 105(3):363-71. PubMed ID: 12757429
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The endothelial glycocalyx prefers albumin for evoking shear stress-induced, nitric oxide-mediated coronary dilatation.
    Jacob M; Rehm M; Loetsch M; Paul JO; Bruegger D; Welsch U; Conzen P; Becker BF
    J Vasc Res; 2007; 44(6):435-43. PubMed ID: 17622736
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Dysfunction of the nitric oxide pathway during coronary endothelium regeneration].
    Vanhoutte PM; Fournet-Bourguignon MP; Vilaine JP
    Bull Acad Natl Med; 2002; 186(8):1525-39; discussion 1540-1. PubMed ID: 12669367
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Large-conductance K+ channel opener CGS7184 as a regulator of endothelial cell function.
    Wrzosek A; Łukasiak A; Gwóźdź P; Malińska D; Kozlovski VI; Szewczyk A; Chlopicki S; Dołowy K
    Eur J Pharmacol; 2009 Jan; 602(1):105-11. PubMed ID: 19028489
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Viscum album aqueous extract induces inducible and endothelial nitric oxide synthases expression in isolated and perfused guinea pig heart. Evidence of the coronary vasodilation mechanism].
    Tenorio López FA; del Valle Mondragón L; Zarco Olvera G; Torres Narváez JC; Pastelín Hernández G
    Arch Cardiol Mex; 2006; 76(2):130-9. PubMed ID: 16859209
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel function of VEGF receptor-2 (KDR): rapid release of nitric oxide in response to VEGF-A stimulation in endothelial cells.
    Kroll J; Waltenberger J
    Biochem Biophys Res Commun; 1999 Nov; 265(3):636-9. PubMed ID: 10600473
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Volatile anesthetics do not alter bradykinin-induced release of nitric oxide or L-citrulline in crystalloid perfused guinea pig hearts.
    Fujita S; Roerig DL; Chung WW; Bosnjak ZJ; Stowe DF
    Anesthesiology; 1998 Aug; 89(2):421-33. PubMed ID: 9710401
    [TBL] [Abstract][Full Text] [Related]  

  • 31. EDRF and nitric oxide production in cultured endothelial cells: direct inhibition by E. coli endotoxin.
    Myers PR; Wright TF; Tanner MA; Adams HR
    Am J Physiol; 1992 Mar; 262(3 Pt 2):H710-8. PubMed ID: 1558180
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor.
    Malinski T; Taha Z
    Nature; 1992 Aug; 358(6388):676-8. PubMed ID: 1495562
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Release of NO and EDRF from cultured bovine aortic endothelial cells.
    Myers PR; Guerra R; Harrison DG
    Am J Physiol; 1989 Apr; 256(4 Pt 2):H1030-7. PubMed ID: 2784944
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Release of endothelium derived nitric oxide in relation to pressure and flow.
    Kelm M; Feelisch M; Deussen A; Strauer BE; Schrader J
    Cardiovasc Res; 1991 Oct; 25(10):831-6. PubMed ID: 1747876
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparison of endothelium-derived relaxing factor activity in the coronary and renal arteries of the pig.
    Christie MI; Lewis MJ
    Eur J Pharmacol; 1991 Sep; 202(2):143-9. PubMed ID: 1724965
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Endothelium, coronary vasodilation, and organic nitrates.
    Mehta JL
    Am Heart J; 1995 Feb; 129(2):382-91. PubMed ID: 7832112
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanosensitive release of parathyroid hormone-related peptide from coronary endothelial cells.
    Degenhardt H; Jansen J; Schulz R; Sedding D; Braun-Dullaeus R; Schlüter KD
    Am J Physiol Heart Circ Physiol; 2002 Oct; 283(4):H1489-96. PubMed ID: 12234801
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Real time measurement of nitric oxide released from cultured endothelial cells.
    Kurumatani H; Kikuchi K; Nagano T; Hirobe M; Yamazaki J; Nagao T
    Biol Pharm Bull; 1998 Dec; 21(12):1286-9. PubMed ID: 9881640
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computer system for the acquisition and analysis of vascular contractility. Application to a bioassay of endothelial cell function.
    Winn MJ; Panus PC; Norton P; Dai J
    J Pharmacol Toxicol Methods; 1992 Aug; 28(1):49-55. PubMed ID: 1392059
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein phosphorylation in intact coronary endothelial cells by bradykinin.
    Hartmann M; Kelm M; Schrader J
    Life Sci; 1991; 48(17):1619-26. PubMed ID: 2016994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.