These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 26181517)
1. Bacterial Exposure at the Larval Stage Induced Sexual Immune Dimorphism and Priming in Adult Aedes aegypti Mosquitoes. Moreno-García M; Vargas V; Ramírez-Bello I; Hernández-Martínez G; Lanz-Mendoza H PLoS One; 2015; 10(7):e0133240. PubMed ID: 26181517 [TBL] [Abstract][Full Text] [Related]
2. Functional characterization of two clip domain serine proteases in innate immune responses of Aedes aegypti. Wang HC; Wang QH; Bhowmick B; Li YX; Han Q Parasit Vectors; 2021 Nov; 14(1):584. PubMed ID: 34819136 [TBL] [Abstract][Full Text] [Related]
3. Effect of larval density and Sindbis virus infection on immune responses in Aedes aegypti. Kim CH; Muturi EJ J Insect Physiol; 2013 Jun; 59(6):604-10. PubMed ID: 23562781 [TBL] [Abstract][Full Text] [Related]
4. Profiling infection responses in the haemocytes of the mosquito, Aedes aegypti. Bartholomay LC; Mayhew GF; Fuchs JF; Rocheleau TA; Erickson SM; Aliota MT; Christensen BM Insect Mol Biol; 2007 Dec; 16(6):761-76. PubMed ID: 18093005 [TBL] [Abstract][Full Text] [Related]
5. The ontogeny of immunity in the honey bee, Apis mellifera L. following an immune challenge. Laughton AM; Boots M; Siva-Jothy MT J Insect Physiol; 2011 Jul; 57(7):1023-32. PubMed ID: 21570403 [TBL] [Abstract][Full Text] [Related]
6. Aedes FADD: a novel death domain-containing protein required for antibacterial immunity in the yellow fever mosquito, Aedes aegypti. Cooper DM; Chamberlain CM; Lowenberger C Insect Biochem Mol Biol; 2009 Jan; 39(1):47-54. PubMed ID: 18977438 [TBL] [Abstract][Full Text] [Related]
7. Functional implications of the peptidoglycan recognition proteins in the immunity of the yellow fever mosquito, Aedes aegypti. Wang S; Beerntsen BT Insect Mol Biol; 2015 Jun; 24(3):293-310. PubMed ID: 25588548 [TBL] [Abstract][Full Text] [Related]
8. Knock-down of REL2, but not defensin A, augments Aedes aegypti susceptibility to Bacillus subtilis and Escherichia coli. Magalhaes T; Leandro DC; Ayres CF Acta Trop; 2010 Feb; 113(2):167-73. PubMed ID: 19879852 [TBL] [Abstract][Full Text] [Related]
9. Genetic variance and genotype-by-environment interaction of immune response in Aedes aegypti (Diptera: Culicidae). Moreno-García M; Lanz-Mendoza H; Córdoba-Aguilar A J Med Entomol; 2010 Mar; 47(2):111-20. PubMed ID: 20380290 [TBL] [Abstract][Full Text] [Related]
10. A mosquito juvenile hormone binding protein (mJHBP) regulates the activation of innate immune defenses and hemocyte development. Kim IH; Castillo JC; Aryan A; Martin-Martin I; Nouzova M; Noriega FG; Barletta ABF; Calvo E; Adelman ZN; Ribeiro JMC; Andersen JF PLoS Pathog; 2020 Jan; 16(1):e1008288. PubMed ID: 31961911 [TBL] [Abstract][Full Text] [Related]
11. The role of NF-kappaB factor REL2 in the Aedes aegypti immune response. Antonova Y; Alvarez KS; Kim YJ; Kokoza V; Raikhel AS Insect Biochem Mol Biol; 2009 Apr; 39(4):303-14. PubMed ID: 19552893 [TBL] [Abstract][Full Text] [Related]
12. Larval nutritional stress affects vector immune traits in adult yellow fever mosquito Aedes aegypti (Stegomyia aegypti). Telang A; Qayum AA; Parker A; Sacchetta BR; Byrnes GR Med Vet Entomol; 2012 Sep; 26(3):271-81. PubMed ID: 22112201 [TBL] [Abstract][Full Text] [Related]
13. The Aedes aegypti IMD pathway is a critical component of the mosquito antifungal immune response. Ramirez JL; Muturi EJ; Barletta ABF; Rooney AP Dev Comp Immunol; 2019 Jun; 95():1-9. PubMed ID: 30582948 [TBL] [Abstract][Full Text] [Related]
14. Effect of temperature stress on immature stages and susceptibility of Aedes aegypti mosquitoes to chikungunya virus. Mourya DT; Yadav P; Mishra AC Am J Trop Med Hyg; 2004 Apr; 70(4):346-50. PubMed ID: 15100445 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of larval immune system traits as a correlated response to selection for rapid development in Drosophila melanogaster. Dey P; Mendiratta K; Bose J; Joshi A J Genet; 2016 Sep; 95(3):719-23. PubMed ID: 27659343 [No Abstract] [Full Text] [Related]
16. Immune Defense Varies within an Instar in the Tobacco Hornworm, Manduca sexta. Booth K; Cambron L; Fisher N; Greenlee KJ Physiol Biochem Zool; 2015; 88(2):226-36. PubMed ID: 25730277 [TBL] [Abstract][Full Text] [Related]
17. Strain-specific pathogenicity and subversion of phenoloxidase activity in the mosquito Aedes aegypti by members of the fungal entomopathogenic genus Isaria. Ramirez JL; Muturi EJ; Dunlap C; Rooney AP Sci Rep; 2018 Jul; 8(1):9896. PubMed ID: 29967469 [TBL] [Abstract][Full Text] [Related]
18. Targeting gene expression to the female larval fat body of transgenic Aedes aegypti mosquitoes. Totten DC; Vuong M; Litvinova OV; Jinwal UK; Gulia-Nuss M; Harrell RA; Beneš H Insect Mol Biol; 2013 Feb; 22(1):18-30. PubMed ID: 23241066 [TBL] [Abstract][Full Text] [Related]
19. Phenoloxidase activity acts as a mosquito innate immune response against infection with Semliki Forest virus. Rodriguez-Andres J; Rani S; Varjak M; Chase-Topping ME; Beck MH; Ferguson MC; Schnettler E; Fragkoudis R; Barry G; Merits A; Fazakerley JK; Strand MR; Kohl A PLoS Pathog; 2012; 8(11):e1002977. PubMed ID: 23144608 [TBL] [Abstract][Full Text] [Related]
20. Anopheles gambiae larvae mount stronger immune responses against bacterial infection than adults: evidence of adaptive decoupling in mosquitoes. League GP; Estévez-Lao TY; Yan Y; Garcia-Lopez VA; Hillyer JF Parasit Vectors; 2017 Aug; 10(1):367. PubMed ID: 28764812 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]